
Webware for Python 3
Release 3.0.9

Christoph Zwerschke et al.

May 20, 2023





CONTENTS:

1 Overview 1
1.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Design Points and Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Download and Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Feedback, Contributing and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Installation 5
2.1 Python Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Create a Virtual Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Activate the Virtual Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Installation with Pip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Installing “Extras” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Installation from Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 Check the Installed Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 List of Changes 7
3.1 What’s new in Webware for Python 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Migration Guide 9
4.1 Check which Webware plug-ins you were using . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Migrate your application to Python 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Use a WSGI server instead of the WebKit application server . . . . . . . . . . . . . . . . . . . . . . 10

5 Copyright and License 11
5.1 The Gist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Quickstart 13
6.1 The Webware CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Creating a Working Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.3 Running the Webware Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.4 Using the Admin Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.5 A “Hello World” Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Beginner Tutorial 17
7.1 Creating a Working Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Changing the Webware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 Creating and Understanding the Servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.4 A Brief Introduction to the Servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.5 A Photo Album . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

i



8 Application Development 25
8.1 Core Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.2 Setting up your application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.3 Structuring your Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.4 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.5 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.6 Plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.7 Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.8 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.9 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.10 Errors and Uncaught Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.11 Activity Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.12 Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.13 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.14 Bootstrap Webware from Command line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.15 How do I Develop an App? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9 Configuration 35
9.1 Application.config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10 Deployment 43
10.1 Installation on the Production System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.2 Starting the WSGI Server on Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10.3 Logfile Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.4 Running behind a Reverse Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.5 Using Apache and mod_wsgi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.6 Other WSGI servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.7 Sourceless Installs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.8 Caveats of Multiprocessing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

11 Plug-ins 59

12 Style Guidelines 61
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
12.2 Syntax and Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
12.3 Structure and Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

13 PSP 67
13.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.3 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.4 PSP Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
13.5 Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
13.6 Other Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
13.7 Developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

14 UserKit 75
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
14.2 Examples and More Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
14.3 Encryption of Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
14.4 Credit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

15 TaskKit 77
15.1 Scheduling with Python and Webware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
15.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

ii



15.3 Generating static pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
15.4 Generating static pages again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
15.5 The Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
15.6 Credit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

16 WebUtils 83
16.1 HTMLForException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
16.2 HTTPStatusCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

17 MiscUtils 85

18 Testing 87
18.1 Testing Webware itself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
18.2 Testing Webware applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

19 API Reference 89
19.1 Core Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
19.2 PSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
19.3 UserKit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
19.4 TaskKit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
19.5 WebUtils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
19.6 MiscUtils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

20 Indices and tables 271

Python Module Index 273

Index 275

iii



iv



CHAPTER

ONE

OVERVIEW

1.1 Synopsis

Webware for Python is a framework for developing object-oriented, web-based applications.

The project had been initiated in 1999 by Chuck Esterbrook with the goal of creating the ultimate web development
suite for Python, and it soon got a lot of attraction. Jay Love, Geoff Talvola and Ian Bicking were other early contributors
and core developers.

They created a mature and stable web framework that has been used in production for a long time by a variety of people
in different environments. Since then, a lot of other web frameworks for Python emerged and have taken the lead, such
as Django, Flask or Pyramid, while Webware for Python got less attention. Webware for Python was still available,
maintained and slightly improved by Christoph Zwerschke, and happily used here and there, but did not change much
over the years.

Since Webware for Python was based on Python 2, for which support ended 20 years later at the end of 2019, but
there were still Webware for Python applications in the wild running happily after 2020, Christoph Zwerschke created
a Python 3 based edition of the project called Webware for Python 3.

1.2 Design Points and Changes

Webware for Python 3 kept the following ideas and key goals from the original project:

• Simplicity. Webware’s code is quite simple and easy to understand if you feel the need to extend it.

• Servlets. Similar to Java servlets, they provide a familiar basis for the construction of web applications.

• Robustness. A crash of one page will not crash the server. Exception reports are logged and easy to read when
developing.

• Object-programming programming (making good use of multiple inheritance and the template method pat-
tern).

• Extensibility via plug-ins.

• Python Server Pages (PSP, similar to ASP, PHP and JSP) as a built-in plug-in.

• Built-in plug-ins for Task scheduling and User management.

• Excellent documentation and numerous examples.

Another key goal of the original project was to provide a “Pythonic” API, instead of simply copying Java APIs. How-
ever, the project was created when Python 2 was still in its infancy, lacking many modern features and conventions
such as PEP-8. Therefore, the Webware for Python API is a bit different from what is considered “Pythonic” nowadays.
Particularly, it uses getters and setters instead of properties (but without the “get” prefix for getters), and camelCase

1

https://webwareforpython.github.io/w4py3/
https://webwareforpython.github.io/w4py3/
https://webwareforpython.github.io/w4py/


Webware for Python 3, Release 3.0.9

method names instead of snake_case. In order to facilitate migration of existing projects, Webware for Python 3 kept
this old API, even though it is not in line with PEP-8 and could be simplified by using properties. Modernizing the API
will be a goal for a possible third edition of Webware for Python, as well as using the Python logging facility which did
not yet exist when Webware for Python was created and is still done via printing to the standard output.

The plug-in architecture has also been kept in Webware for Python 3, but now implemented in a more modern way
using entry points for discovering plug-ins. Old plug-ins are not compatible, but can be adapted quite easily. The old
Webware for Python installer has been replaced by a standard setup.py based installation.

The most incisive change in Webware for Python 3 is the discontinuation of the threaded application server that was
part of the built-in “WebKit” plug-in and actually one of the strong-points of Webware for Python. However, a threaded
application based architecture may not be the best option anymore for Python in the age of multi-core processors due
to the global interpreter lock (GIL), and maintaining the application server based architecture would have also meant to
maintain the various adapters such as mod_webkit and the start scripts for the application server for various operating
systems. This did not appear to be feasible. At the same time, Python nowadays already provides a standardized way
for web frameworks to deploy web applications with the Python Web Server Gateway Interface (WSGI). By making the
already existing Application class of Webware for Python usable as a WSGI application object, Webware applications
can now be deployed in a standardized way using any WSGI compliant web server, and the necessity for operating
as an application server itself has been removed. Webware for Python 3 applications deployed using mod_wsgi are
even performing better and can be scaled in more ways than applications for the original Webware for Python that
have been deployed using mod_webkit which used to be the deployment option with the best performance. During
development, the waitress WSGI server is used to serve the application, replacing the old built-in HTTP server. As a
structural simplification that goes along with the removal of the WebKit application server, the contents of the WebKit
plug-in are now available at the top level of Webware for Python 3, and WebKit ceased to exist as a separate plug-in.

The second incisive change in Webware for Python 3 is the removal of the “MiddleKit” as a built-in plug-in. This
plug-in served as a middle tier between the data storage and the web interface, something that nowadays is usually
done with an object relational mapper (ORM) such as SQLAlchemy. MiddleKit was a powerful component that many
users liked and used in production, but was also pretty complex, with adapters to various databases, and therefore hard
to maintain. It made sense to swap it out and provide MiddleKit for Webware for Python 3 as a separate, external
plug-in on GitHub. Also removed were the “CGIWrapper”, “COMKit” and “KidKit” built-in plug-ins, because they
have become obsolete or outdated. The other built-in plug-ins were less complex than MiddleKit and were kept as
built-in plug-ins of Webware for Python 3. Particularly, “PSP, “UserKit” and “TaskKit” are still available in Webware
for Python 3.

To facilitate web development with Webware for Python 3, a webware console script has been added that can be
used to create working directories for new application and start the development server. This script replaces the old
MakeAppWorkDir and AppServer scripts. When creating a new working directory, a WSGI script will also be created
that can be used to attach the application to a web server.

The documentation contexts of the various plug-ins have been replaced by a common Sphinx based documentation
provided in the top-level docs directory. The tests are still contained in Tests subdirectories at the top and plug-in
levels, but the test suite has been expanded and is using the unittest framework consistently. The twill tests have also
been replaced by unit tests based using WebTest. They make sure that all servlets in the examples and testing contexts
work as expected. Since Webware for Python 3 uses WSGI, WebTest can now also be used to test applications built
with Webware for Python 3.

Otherwise, not much has been changed, so that migrating existing Webware for Python applications to Webware for
Python 3 should be straight forward. Of course, you still need to migrate your Webware applications from Python 2 to
Python 3, but meanwhile a lot of tools and guidelines have been provided that help making this process as painless as
possible.

See the List of Changes and the Migration Guide for more detailed information.

2 Chapter 1. Overview

https://realpython.com/python-gil/
https://www.fullstackpython.com/wsgi-servers.html
https://docs.pylonsproject.org/projects/waitress/
https://en.wikipedia.org/wiki/Object-relational_mapping
https://www.sqlalchemy.org/
https://github.com/WebwareForPython/w4py3-middlekit
https://twill-tools.github.io/twill/
https://docs.pylonsproject.org/projects/webtest/en/latest/
https://docs.python.org/3/howto/pyporting.html
https://docs.python.org/3/howto/pyporting.html


Webware for Python 3, Release 3.0.9

1.3 Download and Installation

See the chapter on Installation for instructions how to download and install Webware for Python 3.

1.4 Documentation

This documentation is available online via GitHub Pages and via Read the Docs.

1.5 Feedback, Contributing and Support

You can report issues and send in pull requests using the GitHub project page of Webware for Python 3. If you want to
be notified when new releases are available, you can use the “Watch” feature of GitHub.

1.3. Download and Installation 3

https://webwareforpython.github.io/w4py3/
https://webware-for-python-3.readthedocs.io/
https://github.com/WebwareForPython/w4py3/issues
https://github.com/WebwareForPython/w4py3/pulls
https://github.com/WebwareForPython/w4py3
https://github.com/WebwareForPython/w4py3/releases


Webware for Python 3, Release 3.0.9

4 Chapter 1. Overview



CHAPTER

TWO

INSTALLATION

2.1 Python Version

Webware for Python 3 requires at least Python version 3.6.

2.2 Create a Virtual Environment

Though you can install Webware for Python 3 into your global Python environment, we recommend creating a separate
virtual environment for every Webware for Python 3 project.

To create such a virtual environment in the .venv subdirectory of the current directory, run the following command:

python3 -m venv .venv

If you are using Windows, may may need to run the following instead:

py -3 -m venv .venv

2.3 Activate the Virtual Environment

To activate the virtual environment, you need to execute the “activate” command of the virtual environment like this:

. .venv/bin/activate

Or, if your are using Windows, the “activate” command can be executed like this:

.venv\Scripts\activate

5



Webware for Python 3, Release 3.0.9

2.4 Installation with Pip

With the virtual environment activated, you can now download and install Webware for Python 3 in one step using the
following command:

pip install "Webware-for-Python>=3"

For developing with Webware for Python, you will probably also install “extras” as explained below.

2.5 Installing “Extras”

When installing Webware for Python 3, the following “extras” can optionally be installed as well:

• “dev”: extras for developing Webware applications

• “examples”: extras for running all Webware examples

• “test”: extras needed to test all functions of Webware

• “docs”: extras needed to build this documentation

On your development machine, we recommend installing the full “test” environment which also includes the other
two environments. To do that, you need to specify the “Extras” name in square brackets when installing Webware for
Python 3:

pip install "Webware-for-Python[dev]>=3"

2.6 Installation from Source

Alternatively, you can also download Webware for Python 3 from PyPI, and run the setup.py command in the tar.gz
archive like this:

setup.py install

You will then have to also install the “extra” requirements manually, though. Have a look at the setup.py file to see the
list of required packages.

2.7 Check the Installed Version

In order to check that Webware has been installed properly, run the command line tool webware with the --version
option:

webware --version

This should show the version of Webware for Python 3 that you have installed. Keep in mind that the virtual environment
into which you installed Webware for Python 3 needs to be activated before you run the “webware” command.

6 Chapter 2. Installation

https://pypi.org/project/Webware-for-Python/


CHAPTER

THREE

LIST OF CHANGES

3.1 What’s new in Webware for Python 3

This is the full list of changes in Webware for Python 3 (first version 3.0.0) compared with Webware for Python 2 (last
version 1.2.3):

• Webware for Python 3 now requires Python 3.6 or newer, and makes internal use of newer Python features where
applicable. Webware applications must now be migrated to or written for Python 3.

• The “Application” instance is now callable and usable as a WSGI application.

• The application server (“AppServer” class and subclasses including the “ThreadedAppServer”) and the various
adapters and start scripts and other related scripts for the application server are not supported anymore. Instead,
Webware applications are now supposed to be served as WSGI applications using a WSGI server such as waitress,
which is now used as the development server.

• The “ASSStreamOut” class has been replaced by a “WSGIStreamOut” class. The “Message” class has been
removed, since it was not really used for anything, simplifying the class hierarchy a bit.

• The Application now has a development flag that can be checked to modify the application and its configuration
depending on whether it is running in development or production mode.

• The custom “install” script has been replaced by a standard “setup” script, Webware for Python 3 is now dis-
tributed as a normal Python package that can be installed in the usual way. The “ReleaseHelper” and “setversion”
scripts are not used anymore.

• The “MakeAppWorkDir” script has been moved to a new “Scripts” directory, which now also contains a “WS-
GIScript” and a “WaitressServer” script which serve as replacements for the old “AppServer” and “Launch” start
scripts. These scripts can now be started as subcommands of a new webware console script, which serves as a
new common Webware CLI.

• Instead of the “AutoReloadingAppServer”, you can use the “reload” option of the WaitressServer script which
uses hupper to monitor the application files and reload the waitress server if necessary. The “ImportSpy” has
been removed.

• The classes of the core “WebKit” component are now available at the root level of Webware for Python 3, and
the WebKit component ceased to exist as a separate plug-in.

• Some built-in plug-ins are not supported anymore: “CGIWrapper”, “ComKit” and “KidKit”.

• “MiddleKit” is not a built-in plug-in anymore, but is provided as a separate project on GitHub now
(WebwareForPython/w4py3-middlekit).

• Webware now uses entry points for discovering plug-ins instead of the old plug-in system, and the plug-in API
has slightly changed. Existing plug-ins must be adapted to Python 3 and the new plug-in API.

7



Webware for Python 3, Release 3.0.9

• The documentation has been moved to a separate directory and is built using Sphinx, instead providing a “Docs”
context for Webware and every plug-in, and using custom documentation builders in the install script. The
existing content has been reformatted for Sphinx, adapted and supplemented.

• The various examples have been slightly improved and updated. Demo servlets showing the use of Dominate
and Yattag for creating HTML in a Pythonic way have been added.

• The side bar page layout now uses divs instead of tables.

• The test suite has been expanded and fully automated using the unit testing framework in the Python standard
library. We also use tox to automate various checks and running the test suite with different Python versions.

• In particular, end-to-end tests using Twill have been replaced by more efficient unit tests using WebTest.

• Internal assert statements have been removed or replaced with checks raising real errors.

• The style guide has been slightly revised. We now rely on flake8 and pylint instead of using the custom “checksrc”
script.

See also the list of releases on GitHub for all changes in newer releases of Webware for Python 3 since the first alpha
release 3.0.0a0.

8 Chapter 3. List of Changes

https://github.com/WebwareForPython/w4py3/releases


CHAPTER

FOUR

MIGRATION GUIDE

In this chapter we try to give some advice on what needs to be done to migrate an existing Webware for Python
application to Webware for Python 3.

Regarding the API, we tried to stay compatible with Webware for Python 2 as much as possible, even though modern
Python uses different naming conventions and prefers the use of properties over getter and setter methods. So, in this
regard, we expect a migration to Webware for Python 3 to be very smooth. The main points in a migration will be the
conversion of the application from Python 2 to Python 3. the adaptation to the use of the WSGI standard instead of the
custom application server, and maybe the usage of Webware plug-ins that are not supported anymore and may need to
be migrated as well.

4.1 Check which Webware plug-ins you were using

First you should check whether the plug-ins your application is using are still available as built-ins plugin of Webware
for Python 3 (w4py3) or as externally provided plug-ins. PSP is still provided as a built-in plug-in. MiddleKit is now
provided as an external plug-in on GitHub (w4py3-middlekit). The “COMKit”, “CGIWrapper” and “KidKit” built-in
plug-ins have been discontinued. Other external plug-ins that have been developed for Webware for Python 2 must first
be ported to Webware for Python 3 before you can use them. See the section on Plug-ins for details on how to write
plug-ins for Webware for Python 3.

4.2 Migrate your application to Python 3

The main migration effort will be porting your Webware application from Python 2 to Python 3. More precisely,
Webware for Python 3 requires Python 3.6 or newer. This effort is necessary anyway, if you want to keep your Webware
application alive for some more years, because the Python foundation declared to end Python 2 support on January 1st
2020, which means that Python 2 will also not be supported by newer operating systems anymore and not even get
security updates anymore. The positive aspect of this is that your Webware application will run slightly faster and you
can now make use of all the modern Python features and libraries in your application. Particularly, f-strings can be very
handy when creating Webware applications.

We will not go into the details of migrating your application from Python 2 to Python 3 here, since much good advice
is already available on the Internet, for instance:

• Porting Python 2 Code to Python 3 (Brett Cannon)

• Supporting Python 3: An in-depth guide (Lennart Regebro)

• The Conservative Python 3 Porting Guide (Peter Viktorin et al)

• How To Port Python 2 Code to Python 3 (Lisa Tagliaferri)

• Migrating from Python 2 to Python 3 (Nick Heath)

9

https://github.com/WebwareForPython/w4py3
https://github.com/WebwareForPython/w4py3-middlekit
https://docs.python.org/3/howto/pyporting.html
http://python3porting.com/
https://portingguide.readthedocs.io/en/latest/
https://www.digitalocean.com/community/tutorials/how-to-port-python-2-code-to-python-3/
https://www.techrepublic.com/article/migrating-from-python-2-to-python-3-a-guide-to-preparing-for-the-2020-deadline/


Webware for Python 3, Release 3.0.9

• Migrating Applications From Python 2 to Python 3 (Mahdi Yusuf)

Note that some of the how-tos also explain how to create code that is backward compatible with Python 2, which is
much more difficult than just porting to Python 3, as we can do when migrating a Webware application to Python 3.
So don’t be frightened by the seeming complexity of the task – it is probably much easier than you may think.

One of the biggest problems when migrating a Python 2 application to Python 3 is often the fact that in Python 3,
strings are now always Unicode, while in Python 2, the native strings were byte strings and you had to add a “u” prefix
to indicate that a string should be Unicode. However, this should not be a big issue when converting a Webware for
Python application. Code such as self.write('<p>Hello, World!</p>') does not need to be modified. The fact
that the string that is written to the output stream had been a byte string in Python 2 and is a Unicode string now in
Python 3 is a detail that you as the application developer do not need to care about. Webware for Python 3 will encode
everything properly to UTF-8 for you behind the scenes. If necessary, you can also change the output encoding from
UTF-8 to something else with the OutputEncoding setting in the application configuration, but nowadays, UTF-8 is
the usual and normally best choice.

Traditionally, Webware applications used simple print statements to output error or debug messages for logging or
debugging purposes. You will need to change these print statements with print function calls when migrating from
Python 2 to Python 3. In a future version of Webware for Python, we may change this and support a proper logging
mechanism instead.

4.3 Use a WSGI server instead of the WebKit application server

The other big change is that instead of using the custom “WebKit” application server, Webware for Python 3 utilizes
the WSGI standard as the only way of serving applications. You will need to adapt your deployment accordingly. See
the section on Deployment for instructions on how to get your application into production using WSGI.

Search your application for direct references to the AppServer instance which does not exist anymore in Webware for
Python 3. In most cases, you can replace these with references to the Application instance which also serves as the
WSGI callable.

Also, search for references to the former WebKit package. This package does not exist anymore as separate plug-in in
Webware for Python 3, its classes can now be found directly in the top level package of Webware for Python 3. So an
import statement like from WebKit.Page import Page should be changed to a simple from Page import Page.

10 Chapter 4. Migration Guide

https://realpython.com/courses/migrating-applications-python-2-python-3/


CHAPTER

FIVE

COPYRIGHT AND LICENSE

5.1 The Gist

Webware for Python is open source, but there is no requirement that products developed with or derivative to Webware
become open source.

Webware for Python is copyrighted, but you can freely use and copy it as long as you don’t change or remove this
copyright notice. The license is a clone of the MIT license.

There is no warranty of any kind. Use at your own risk.

Read this entire document for complete, legal details.

5.2 Copyright

Copyright © 1999 Chuck Esterbrook (Webware for Python)

Copyright © 2019 Christoph Zwerschke (Webware for Python 3)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

11



Webware for Python 3, Release 3.0.9

12 Chapter 5. Copyright and License



CHAPTER

SIX

QUICKSTART

In this chapter we will show how you can create and run a “hello world” application with Webware for Python 3, and
try out the example servlets provided with Webware. In the next chapter, we will then go into a little bit more detail
and create a slightly more complex application.

We assume you have already installed Webware for Python 3 into a virtual environment as explained in the chapter on
Installation.

6.1 The Webware CLI

Webware for Python 3 comes with a command line tool named “webware” that helps creating a new projects and starting
a development web server. You can run webware with the --help option to see the available subcommands:

webware --help

Remember that you need to activate the virtual environment where you installed Webware for Python 3 first if you
haven’t installed it globally.

6.2 Creating a Working Directory

You can use the subcommand make to start making a new Webware for Python application. This subcommand will
create a new Webware for Python 3 application working directory with subdirectories for your Webware contexts,
configuration, etc. and will also generate some boilerplate files to get you started. Again, use the --help option to see
all available options:

webware make --help

Let’s start a simple “hello world” project using the make command:

webware make HelloWorld

You should see some output on the console explaining what has been created for your. Particularly, you should now
have a subdirectory “HelloWorld” in your current directory.

Each Webware application consists of one ore more “contexts”, which correspond to different URL prefixes. Some
contexts such as the “example” and “admin” contexts are already provided with Webware for Python by default.

13



Webware for Python 3, Release 3.0.9

6.3 Running the Webware Examples

You need to cd into the newly created application working directory first:

cd HelloWorld

Now you can run the application with the following command:

webware serve -b

The “serve” subcommand will start the development server, and the -b option will open your standard web browser
with the base URL of the application – by default this is http://localhost:8080/. You should see a simple web
page with the heading “Welcome to Webware for Python!” in your browser.

You should also a link to the “Exmples” context located at the URL http://localhost:8080/Examples/. This
context features several example servlets which you can select in the navigation side bar on the left side. Note that
some of the examples need additional packages which should be installed as “extras” as explained in the chapter on
Installation.

Try one of the example now, e.g. the CountVisits servlet. This example demonstrates how to use Webware Sessions to
keep application state. In the navigation bar you will also find a link to view the source of CountVisits. You will find
that the source code for this servlet is very simple. It inherits from the ExamplePage servlet.

6.4 Using the Admin Context

Besides the “Examples” context, Webware for Python also provides an “Admin” context out of the box. By default it
is located at the URL http://localhost:8080/Admin/. You will notice an error message that says you first need
to add an admin password using the AdminPassword setting in the Application.config configuration file.

You will find the configuration file in the Configs subdirectory of your application working directory. The config-
uration file defines all settings for the running Webware application using standard Python syntax. Try changing the
AdminPassword defined at the top. You will notice that if you reload the admin context in your browser, you will still
see the message about a missing admin password. You need to restart the application in order to make the changed
application configuration effective. To do so, stop the running Webware application in your console with the Ctrl-C
key combination, and start it again.

You can use the -r option to automatically restart the development server when files used in your application are
changed:

webware serve -r

The serve subcommands has a few more options which you can see by running it with the --help option:

webware serve --help

After adding an admin password, you should be able to log in to the admin context using the user name “admin” and
the admin password you selected.

In the navigation bar on the left side you now see several admin servlets. For example, the “Plug-ins” servlet lists all
the Webware for Python plug-ins currently installed.

14 Chapter 6. Quickstart

http://localhost:8080/Examples/CountVisits
http://localhost:8080/Examples/View?filename=CountVisits.py


Webware for Python 3, Release 3.0.9

6.5 A “Hello World” Example

The make subcommand also created a subdirectory MyContext that serves as the default context for your application.
You can rename this context in the Application.config file, or give it a different name with the -c option of the
make subcommand. Let’s leave the name for now – since it is the default context, you do not need to pass it in the URL.

A newly created default context already contains one servlet Main.py. Again, you don’t need to pass this name in the
URL, because it is the default name for the directory index, defined in the DirectoryFile setting of the application
configuration file.

Let’s add another very simple servlet HelloWorld.py to our default context. But first, let’s add a link to this servlet
to the Main servlet. Open the MyContext/Main.py file in your editor and add the following line at the bottom of the
method writeContent():

self.writeln('<ul><li><a href="HelloWorld">Hello, World!</a></li></ul>')

Everything that you pass to the writeln() method is written onto the current page. This is the main method you will
be using in Webware for Python to create dynamic HTML pages. You can also use the write() method which does
the same without appending a new-line character at the end. This approach is very similar to writing CGI applications.
However, the servlets are kept in memory and not reloaded every time you visit a page, so Webware for Python is
much more efficient. Also, servlets classes allow a much better structuring of your application using object oriented
programming.

When you navigate to the start page of your application, you should now already see this link. For now, you will get an
“Error 404” when trying to click on this link. In order to make it operational, save the following file as MyContext/
HelloWorld.py in your application working directory:

from Page import Page

class HelloWorld(Page):

def title(self):
return 'Hello World Example'

def writeContent(self):
self.writeln('<h1>Hello, World!</h1>')

Now the link on the start page should work and you should see “Hello World!” on your page and whatever more you
want to write in the writeContent() method above.

If you want to change the style of the page, use different colors or larger letters, you should use the writeStyleSheet()
method to define an inline style sheet or link to a static CSS file. For example, try adding the following method to your
HelloWorld class above:

def writeStyleSheet(self):
self.writeln('''<style>

h1 {
color: blue;
font-size: 40px;
font-family: sans-serif;
text-align: center;

}
</style>''')

6.5. A “Hello World” Example 15



Webware for Python 3, Release 3.0.9

16 Chapter 6. Quickstart



CHAPTER

SEVEN

BEGINNER TUTORIAL

In this tutorial we will show how to write a very simple Webware application.

Again, we assume that you have Webware for Python 3 already installed in a virtual environment, and activate the
virtual environment as explained in the chapter on Installation.

7.1 Creating a Working Directory

We’ll first set up a directory dedicated to your application, the so-called “application working directory”. Change
into your home directory or wherever you want to create that working directory. We recommend creating the virtual
environment and the application working directory as siblings in a dedicated base directory, which can be the home
directory of a dedicated user that acts as “owner” of the application. Then run this command:

webware make -c Context -l Lib WebwareTest

You’ll now have a directory “WebwareTest” in the current directory. Inside this directory will be several subdirectories
and a couple files. The directories of interest are Context (that you specified with -c context) where you’ll be
putting your servlets; Configs that holds some configuration files; and Lib where you can put your non-servlet code.

For more information about the working directory and setting up the file structure for your application, see Application
Development.

7.2 Changing the Webware Configuration

For the most part the configuration is fine, but we’ll make a couple changes to make it easier to develop. For more
information on configuration see the chapter on Configuration.

One change you may want to make to allow you to use more interesting URLs. In Application.config, change the
ExtraPathInfo setting from False (the default) to True:

ExtraPathInfo = True

Otherwise the settings should be appropriate already for our purposes.

17



Webware for Python 3, Release 3.0.9

7.3 Creating and Understanding the Servlet

Webware’s core concept for serving pages is the servlet. This is a class that creates a response given a request.

The core classes to understanding the servlet are Servlet, HTTPServlet, and Page. Also of interest would be the
request (Request and HTTPRequest) and the response (Response and HTTPResponse) – the HTTP- versions of these
classes are more interesting. There is also a Transaction object, which is solely a container for the request and
response.

While there are several levels you can work on while creating your servlet, in this tutorial we will work solely with
subclassing the Page class. This class defines a more high-level interface, appropriate for generating HTML (though
it can be used with any content type). It also provides a number of convenience methods.

7.4 A Brief Introduction to the Servlet

Each servlet is a plain Python class. There is no Webware magic (except perhaps for the level one import module based
on URL spell). PSP has more magic, but that’s a topic for another chapter.

An extremely simple servlet might look like:

from Page import Page

class MyServlet(Page):

def title(self):
return 'My Sample Servlet'

def writeContent(self):
self.write('Hello world!')

This would be placed in a file MyServlet.py. Webware will create a pool of MyServlet instances, which will be
reused. Servlets “write” the text of the response, like you see in the writeContent() method above.

Webware calls the servlet like this:

• An unused servlet is taken from the pool, or another servlet is created.

• awake(transaction) is called. This is a good place to set up data for your servlet. You can put information
in instance variables for use later on. But be warned – those instance variables will hang around potentially for
a long time if you don’t delete them later (in sleep).

• Several low-level methods are called, which Page isolates you from. We will ignore these.

• writeHTML() is called. Page implements this just fine, but you can override it if you want total control, or if
you want to output something other than HTML.

• writeDocType() would write something like <!DOCTYPE html>.

• The <head> section of the page is written. title() gives the title, and you probably want to override it.

• writeStyleSheet() is called, if you want to write that or anything else in the <head> section.

• The <body> tag is written. Have htBodyArgs() return anything you want in the <body> tag (like
onLoad="loadImages()").

• writeBodyParts() is called, which you may want to override if you want to create a template for other servlets.

• writeContent() should write the main content for the page. This is where you do most of your display work.

18 Chapter 7. Beginner Tutorial



Webware for Python 3, Release 3.0.9

• The response is packaged up, the headers put on the front, cookies handled, and it’s sent to the browser. This is
all done for you.

• sleep(transaction) is called. This is where you should clean up anything you might have set up earlier –
open files, open database connections, etc. Often it’s empty. Note that sleep() is called even if an exception
was raised at any point in the servlet processing, so it should (if necessary) check that each resource was in fact
acquired before trying to release it.

• The servlet is placed back into the pool, to be used again. This only happens after the transaction is complete –
the servlet won’t get reused any earlier.

You only have to override the portions that you want to. It is not uncommon to only override the writeContent()
method in a servlet, for instance.

You’ll notice a file Context/Main.py in your working directory. You can look at it to get a feel for what a servlet
might look like. (As an aside, a servlet called Main or index will be used analogous to the index.html file). You can
look at it for a place to start experimenting, but here we’ll work on developing an entire (small) application, introducing
the other concepts as we go along.

7.5 A Photo Album

If you look online, you’ll see a huge number of web applications available for an online photo album. The world needs
one more!

You will need the Pillow library installed for this example. If you installed Webware for Python 3 with the “examples”
or “test” option, as recommended in the chapter on Installation, this should be already the case. First we’ll use this
library to find the sizes of the images, and later we will use it to create thumbnails.

We’ll develop the application in two iterations.

7.5.1 Iteration 1: Displaying files

For simplicity, we will store image files in a subdirectory Pics of the default context directory WebwareTest/Context
and let the development server deliver the files. In a production environment, you would place the Pics directory
outside of the context and let the web server deliver the files directly.

For the first iteration, we’ll display files that you upload by hand to the Pics directory.

We do this with two servlets – one servlet Main.py to show the entire album, and another View.py for individual
pictures. Place these two servlets in the default context directory. First, Main.py (replacing the example servlet that
has already been crated):

import os

from PIL import Image # this is from the Pillow library

from Page import Page # the base class for web pages

dir = os.path.join(os.path.dirname(__file__), 'Pics')

class Main(Page):

def title(self):
# It's nice to give a real title, otherwise "Main" would be used.

(continues on next page)

7.5. A Photo Album 19

https://python-pillow.org/


Webware for Python 3, Release 3.0.9

(continued from previous page)

return 'Photo Album'

def writeContent(self):
# We'll format these simply, one thumbnail per line:
for filename in os.listdir(dir):

im = Image.open(os.path.join(dir, filename))
w, h = im.size
# Here we figure out the scaled-down size of the image,
# so that we preserve the aspect ratio. We'll use fake
# thumbnails, where the image is scaled down by the browser.
w, h = int(round(w * 100 / h)), 100
# Note that we are just using f-strings to generate the HTML.
# There's other ways, but this works well enough.
# We're linking to the View servlet which we'll show later.
# Notice we use urlencode -- otherwise we'll encounter bugs if
# there are file names with spaces or other problematic chars.
url = self.urlEncode(filename)
self.writeln(f'<p><a href="View?filename={url}">'

f'<img src="Pics/{url}" width="{w}" height="{h}"></a></p>')

The servlet View.py takes one URL parameter of filename. You can get the value of a URL parameter
like self.request().field('filename') or, if you want a default value, you can use self.request().
field('filename', defaultValue). In the likely case you don’t want to write self.request() before retrieving
each value, do:

req = self.request()
self.write(req.field('username'))

If you need the request only once, you can write it even more compactly:

field = self.request().field
self.write(field('username'))

So here is our complete View servlet:

import os

from PIL import Image

from Page import Page

dir = os.path.join(os.path.dirname(__file__), 'Pics')

class View(Page):

def title(self):
return 'View: ' + self.htmlEncode(self.request().field('filename'))

def writeContent(self):
filename = self.request().field('filename')
im = Image.open(os.path.join(dir, filename))
wr = self.writeln

(continues on next page)

20 Chapter 7. Beginner Tutorial



Webware for Python 3, Release 3.0.9

(continued from previous page)

wr('<div style="text-align:center">')
wr(f'<h4>{filename}</h4>')
url = self.urlEncode(filename)
w, h = im.size
wr(f'<img src="Pics/{url}" width="{w}" height="{h}">')
wr('<p><a href="Main">Return to Index</a></p>')
wr('</div>')

7.5.2 Iteration 2: Uploading Files

That was fairly simple – but usually you want to upload files, potentially through a web interface. Along the way we’ll
add thumbnail generation using Pillow, and slightly improve the image index.

We’ll generate thumbnails kind of on demand, so you can still upload files manually – thumbnails will be put in the
directory Thumbs and have -tn appended to the name just to avoid confusion:

import os

from PIL import Image

from Page import Page

baseDir = os.path.dirname(__file__)
picsDir = os.path.join(baseDir, 'Pics')
thumbsDir = os.path.join(baseDir, 'Thumbs')

class Main(Page):

def title(self):
return 'Photo Album'

def writeContent(self):
# The heading:
self.writeln(f'<h1 style="text-align:center">{self.title()}</h1>')
# We'll format these in a table, two columns wide
self.writeln('<table width="100%">')
col = 0 # will be 0 for the left and 1 for the right column
filenames = os.listdir(picsDir)
# We'll sort the files, case-insensitive
filenames.sort(key=lambda filename: filename.lower())
for filename in filenames:

if not col: # left column
self.write('<tr style="text-align:center">')

thumbFilename = os.path.splitext(filename)
thumbFilename = '{}-tn{}'.format(*thumbFilename)
if not os.path.exists(os.path.join(thumbsDir, thumbFilename)):

# No thumbnail exists -- we have to generate one
if not os.path.exists(thumbsDir):

# Not even the Thumbs directory exists -- make it
os.mkdir(thumbsDir)

(continues on next page)

7.5. A Photo Album 21



Webware for Python 3, Release 3.0.9

(continued from previous page)

im = Image.open(os.path.join(picsDir, filename))
im.thumbnail((250, 100))
im.save(os.path.join(thumbsDir, thumbFilename))

else:
im = Image.open(os.path.join(thumbsDir, thumbFilename))

url = self.urlEncode(filename)
w, h = im.size
size = os.stat(os.path.join(picsDir, filename)).st_size
self.writeln(f'<td><p><a href="View?filename={url}">'

f'<img src="Pics/{url}" width="{w}" height="{h}"></a></p>'
f'<p>Filename: {filename}<br>Size: {size} Bytes</p>')

if col: # right column
self.writeln('</tr>')

col = not col
self.write('</table>')
self.write('<p style="text-align:center">'

'<a href="Upload">Upload an image</a></p>')

In a real application, you would probably style the image more nicely using CSS, maybe using a flexbox or grid layout
instead of using a table. You can add a CSS style sheet for this purpose with the writeStyleSheet() method.

The View servlet we’ll leave just like it was.

We’ll add an Upload servlet. Notice we use enctype="multipart/form-data" in the <form> tag – this is an
HTMLism for file uploading (otherwise you’ll just get the filename and not the file contents). Finally, when the form
is finished and we have uploaded the image, we redirect them to the viewing page by using self.response().
sendRedirect(url):

import os

from Page import Page

dir = os.path.join(os.path.dirname(__file__), 'Pics')

class Upload(Page):

def writeContent(self):
if self.request().hasField('imageFile'):

self.doUpload()
return

self.writeln('''
<h3>Upload your image:</h3>
<form action="Upload" method="post" enctype="multipart/form-data">
<input type="file" name="imageFile">
<input type="submit" value="Upload">
</form>''')

def doUpload(self):
file = self.request().field('imageFile')
# Because it's a file upload, we don't get a string back.
# So to get the value we do this:

(continues on next page)

22 Chapter 7. Beginner Tutorial



Webware for Python 3, Release 3.0.9

(continued from previous page)

filename, contents = file.filename, file.value
open(os.path.join(dir, filename), 'wb').write(contents)
url = 'View?filename=' + self.urlEncode(filename)
self.response().sendRedirect(url)

Using the “upload” button it should now be possible to upload images to the Pics directory.

7.5. A Photo Album 23



Webware for Python 3, Release 3.0.9

24 Chapter 7. Beginner Tutorial



CHAPTER

EIGHT

APPLICATION DEVELOPMENT

Webware provides Python classes for generating dynamic content from a web-based, server-side application. It is a
significantly more powerful alternative to CGI scripts for application-oriented development.

In this chapter we explain some more fundamental concepts of Webware for Python and describe best practices for
developing a web application using Webware.

8.1 Core Concepts

The core concepts of Webware for Python are the Application, Servlet, Request, Response and Transaction, for which
there are one or more Python classes.

The application resides on the server-side and manages incoming requests in order to deliver them to servlets which
then produce responses that get sent back to the client. A transaction is a simple container object that holds references
to all of these objects and is accessible to all of them.

Content is normally served in HTML format over an HTTP connection. However, applications can provide other forms
of content and the framework is designed to allow new classes for supporting protocols other than HTTP.

In order to connect the web server and the application, Webware for Python 3 uses the Web Server Gateway Interface
(WSGI). The Webware Application instance serves as the WSGI callable. The web server calls the Application, passing
a dictionary containing CGI-style environment variables for every request. The Application then then processes the
request and sends the response back to the web server, for which WSGI provides to different mechanisms. By default,
Webware applications use the write() callable mechanism, because this is more suitable for the way Webware for
Python applications create responses, by writing to an output stream. However, since not all WSGI servers support this
mechanism, it is also possible to use the more usual WSGI mechanism of passing the response as an iterable. You will
need to switch the Application.config setting WSGIWrite to False in order to use this mechanism.

Many different WSGI servers are available that can be used with Webware for Python 3. By default, Webware uses the
waitress WSGI server as its development server. If you have installed Webware with the “development” or “test” extra,
as recommended in the chapter on Installation, the waitress server should already be installed together with Webware
for Python and will be used when running the webware serve command.

In production, you may want to use a web server with better performance. In the chapter on Deployment we describe
how you can configure a web server like Apache to serve static files directly, while passing dynamic contents to the
Webware application via WSGI, using the mod_wsgi module.

The whole process of serving a page with Webware for Python then looks like this:

• A user requests a web page by typing a URL or submitting a form.

• The user’s browser sends the request to the remote Apache web server.

• The Apache web server passes the request to a mod_wsgi daemon process.

25

https://docs.pylonsproject.org/projects/waitress/
https://modwsgi.readthedocs.io/


Webware for Python 3, Release 3.0.9

• The mod_wsgi daemon process collects information about the request and sends it to the Webware Application
using the WSGI protocol.

• The Webware Application dispatch the raw request.

• The application instantiates an HTTPRequest object and asks the appropriate Servlet (as determined by examin-
ing the URL) to process it.

• The servlet generates content into a given HTTPResponse object, whose content is then sent back via WSGI to
the mod_wsgi daemon process.

• The mod_wsgi daemon process sends the content through the web server and ultimately to the user’s web browser.

8.2 Setting up your application

The first task in developing an application is to set up the file structure in which you will be working.

It is possible to put your application in a subdirectory at the path where the webware package is installed and change
Configs/Application.config to add another context. But do not do this. Your application will be entwined with
the Webware installation, making it difficult to upgrade Webware, and difficult to identify your own files from Webware
files.

8.2.1 Creating a working directory

Instead you should use the webware make command to create an application working directory. You should run it like:

webware make -c Context -l Lib WorkDir

This will create a directory WorkDir that will contain a directory structure for your application. The options are:

-c Context:
Use Context as the name for the application default context. A subdirectory with the same name will be created
in the work dir (you can change that with the -d option). If you do not use the -c option, the context name will
be MyContext. You may simply want to call it App or Context, particularly if you are using only one context.
If you want to add more than one context, you need to create a subdirectory and a corresponding Contexts
dictionary entry in the Application.config file manually.

-l Lib:
Create a Lib directory in the work dir which will be added to the Python module search path. You can use the
-l option multiple times; and you can also add already existent library directories outside of the work dir. If
you want to add the work dir itself to the Python path, pass -l .. In that case, you can import from any Python
package placed directly in the working, including the Webware contexts. Note that the webware package will
always be added to the Python module search path, so that you can and should import any Webware modules and
sub packages directly from the top level.

WorkDir:
The files will be put here. Name if after your application, place it where it is convenient for you. It makes sense to
put the working directory together with the virtual environment where you installed Webware for Python inside
the same distinct base directory. Install any other requirements either into the virtual environment or provide
them in one of the directories specified with the -l option.

You can see all available options if you run webware make --help.

When you run the webware make command with the options describe above, the following directory structure will be
created inside the WorkDir directory:

26 Chapter 8. Application Development



Webware for Python 3, Release 3.0.9

Cache/ Context/ ErrorMsgs/ Logs/ Sessions/
Configs/ error404.html Lib/ Scripts/ Static/

Here’s what the files and directories are for:

Cache:
A directory containing cache files. You won’t need to look in here.

Configs:
Configuration files for the application. These files are copied from the Configs subdirectory in the webware
package, but are specific to this application.

Context:
The directory for your default context. This is where you put your servlets. You can change its name and
location with the -c and -d options. You can also change this subsequently in the Application.config file in
the Configs directory, where you can also configure more than one context. You may also want to remove the
other standard contexts that come with Webware from the config file.

error404.html:
The static HTML page to be displayed when a page is not found. You can remove this to display a standard
error message, modify the page according to your preferences, or use a custom error servlet instead by setting
ErrorPage in the Application.config file appropriately.

ErrorMsgs:
HTML pages for any errors that occur. These can pile up and take up considerable size (even just during devel-
opment), so you’ll want to purge these every so often.

Lib:
An example for an application-specific library package that can be created -l option (in this case, -l Lib).

Logs:
Logs of accesses.

Scripts:
This directory contains a default WSGI script named WSGIScript.py that can be used to start the development
server or connect the Webware application with another WSGI server.

Sessions:
Users sessions. These should be cleaned out automatically, you won’t have to look in this directory.

Static:
This directory can be used as a container for all your static files that are used by your application, but should be
served directly via the web server.

8.2.2 Using a Version Control system for Your Application

A version control system is a useful tool for managing your application. Currently, Git is the most popular one. These
systems handle versioning, but they also make it possible for other people to see snapshots of your progress, for multiple
developers to collaborate and work on an application simultaneously, and they create a sort of implicit file share for
your project. Even if you are the only developer on an application, a version control system can be very helpful.

The working directory is a good place to start for creating a versioned project. Assuming you’re using Git, you can get
started by creating a repository and importing your project into the repository simply by running:

cd WorkDir
git init
git add .
git commit -m "initial import"

8.2. Setting up your application 27

https://git-scm.com/


Webware for Python 3, Release 3.0.9

Note that a hidden .gitignore file with reasonable defaults has already been created for you in the working directory.
It tells Git to ignore files with certain extensions (such as .log or .pyc files), and all the files in certain directories
(Cache, ErrorMsgs, Logs, and Sessions).

8.3 Structuring your Code

Once you’ve got the basic files and directories in place, you’re ready to go in and write some code. Don’t let this
document get in the way of developing the application how you choose, but here are some common patterns that have
proven useful for Webware applications.

8.3.1 SitePage

Subclass a SitePage from Page for your application. This subclass will change some methods and add some new
methods. It serves as the basis and as a template for all the pages that follow. If you have added a Lib subdirectory
to your working directory as explained above, place the SitePage.py file containing the SitePage class into that
directory.

Some code you may wish to include in your SitePage:

• Authentication and security

• Accessing common objects (e.g., a user object, or a document object)

• Page header and footer

• Common layout commands, like writeHeader

• Database access

You may also want to add other frequently used functions into the SitePage module and then do from SitePage
import * in each servlet. You can also put these functions in a dedicated SiteFuncs module, or distribute them in
different modules, and import them explicitly, for better code readability and to avoid cluttering your namespace.

Whether you want to use functions or methods is up to you – in many cases methods can be more easily extended or
customized later, but sometimes method use can become excessive and create unnecessary dependencies in your code.

A basic framework for your SitePage might be:

from Page import Page

class SitePage(Page):

def respond(self, trans):
if self.securePage():

if not self.session().value('username', False):
self.respondLogIn()
return

def securePage(self):
"""Override this method in your servlets to return True if the
page should only be accessible to logged-in users -- by default
pages are publicly viewable"""
return False

(continues on next page)

28 Chapter 8. Application Development



Webware for Python 3, Release 3.0.9

(continued from previous page)

def respondLogin(self):
# Here we should deal with logging in...
pass

Obviously there are a lot of details to add in on your own which are specific to your application and the security and
user model you are using.

8.4 Configuration

There are several configuration parameters through which you can alter how Webware behaves. They are described
below, including their default values. Note that you can override the defaults by placing config files in the Configs/
directory. A config file simply contains Python code assigning the settings you wish to override. For example:

SessionStore = 'Memory'
ShowDebugInfoOnErrors = True

See the chapter on Configuration for more information on settings.

8.5 Contexts

Webware divides the world into contexts, each of which is a directory with its own files and servlets. Webware will
only serve files out of its list of known contexts.

Some of the contexts you will find out of the box are Examples, Documentation and Admin. When viewing either
an example or admin page, you will see a sidebar that links to all the contexts.

Another way to look at contexts is a means for “directory partitioning”. If you have two distinct web applications (for
example, PythonTutor and DayTrader), you will likely put each of these in their own context. In this configuration,
both web applications would be served by the same Application instance. Note that there may be also reasons to
run multiple Application instances for serving your web applications. For instance, this would allow you to start and
stop them independently, run them under different users to give them different permissions, or partition resources like
number of threads individually among the web applications.

Instead of adding your own contexts you may wish to use the webware make command, which will partition your
application from the Webware installation.

To add a new context, add to the Contexts dictionary of Application.config. The key is the name of the context
as it appears in the URL and the value is the path (absolute or relative to the application working directory). Often the
name of the context and the name of the directory will be the same:

'DayTrader': '/All/Web/Apps/DayTrader',

The URL to access DayTrader would then be something like: http://localhost:8080/DayTrader/

The special name default is reserved to specify what context is served when none is specified (as in http://
localhost:8080/). Upon installation, this is the Examples context, which is convenient during development since
it provides links to all the other contexts.

Note that a context can contain an __init__.py which will be executed when the context is loaded at Application
startup. You can put any kind of initialization code you deem appropriate there.

8.4. Configuration 29



Webware for Python 3, Release 3.0.9

8.6 Plug-ins

A plug-in is a software component that is loaded by Webware in order to provide additional functionality without
necessarily having to modify Webware’s source.

The most infamous plug-in is PSP (Python Server Pages) which ships with Webware.

Plug-ins often provide additional servlet factories, servlet subclasses, examples and documentation. Ultimately, it is
the plug-in author’s choice as to what to provide and in what manner.

Technically, plug-ins are Python packages that follow a few simple conventions in order to work with Webware. See
the chapter on Plug-ins for information about writing your own.

8.7 Sessions

Webware provides a Session utility class for storing data on the server side that relates to an individual user’s session
with your site. The SessionStore setting determines where the data is stored and can currently be set to Dynamic,
File, Memcached, Memory, Redis or Shelve.

Storing to the Dynamic session store is the fastest solution and is the default. This session storage method keeps the
most recently used sessions in memory, and moves older sessions to disk periodically. All sessions will be moved to
disk when the server is stopped. Note that this storage mechanism cannot be used in a multi-process environment, i.e.
when you’re running multiple Applications instances in different processes in production.

There are two settings in Application.config relating to this Dynamic session store.
MaxDynamicMemorySessions specifies the maximum number of sessions that can be in memory at any one
time. DynamicSessionTimeout specifies after what period of time sessions will be moved from memory to file.
(Note: this setting is unrelated to the SessionTimeout setting below. Sessions which are moved to disk by the
Dynamic Session store are not deleted). Alternatively to the Dynamic store, you can try out the Shelve session store
which stores the sessions in a database file using the Python shelve module.

If you are using more than one Application instance for load-balancing, the Memcached store will be interesting for
you. Using the python-memcached interface, it is able to connect to a Memcached system and store all the session data
there. This allows user requests to be freely moved from one server to another while keeping their sessions, because
they are all connected to the same memcache. Alternatively, using the redis-py client, the application can also store
sessions in a Redis database.

All on-disk session information is located in the Sessions subdirectory of the application working directory.

Also, the SessionTimeout setting lets you set the number of minutes of inactivity before a user’s session becomes
invalid and is deleted. The default is 60. The Session Timeout value can also be changed dynamically on a per session
basis.

8.8 Actions

Suppose you have a web page with a form and one or more buttons. Normally, when the form is submitted, a method
such as Servlet’s respondToPost() or Page’s writeBody(), will be invoked. However, you may find it more useful
to bind the button to a specific method of your servlet such as new(), remove() etc. to implement the command,
and reserve writeBody() for displaying the page and the form that invokes these methods. Note that your “command
methods” can then invoke writeBody() after performing their task.

The action feature of Page let’s you do this. The process goes like this:

1. Add buttons to your HTML form of type submit and name _action_. For example:

30 Chapter 8. Application Development



Webware for Python 3, Release 3.0.9

<input name="_action_" type="submit" value="New">
<input name="_action_" type="submit" value="Delete">

2. Alternately, name the submit button _action_methodName. For example:

<input name="_action_New" type="submit" value="Create New Item">

3. Add an actions() method to your class to state which actions are valid. (If Webware didn’t force you to do this,
someone could potentially submit data that would cause any method of your servlet to be run). For example:

def actions(self):
return SuperClass.actions(self) + ['New', 'Delete']

4. Now you implement your action methods.

The ListBox example shows the use of actions (in Examples/ListBox.py).

Note that if you proceed as in 1., you can add a methodNameForAction() method to your class transforming the value
from the submit button (its label) to a valid method name. This will be needed, for instance, if there is a blank in the
label on the button. However, usually it’s simpler to proceed as in 2. in such cases.

8.9 Naming Conventions

Cookies and form values that are named with surrounding underscores (such as _sid_ and _action_) are generally
reserved by Webware and various plugins and extensions for their own internal purposes. If you refrain from using
surrounding underscores in your own names, then (a) you won’t accidentally clobber an already existing internal name
and (b) when new names are introduced by future versions of Webware, they won’t break your application.

8.10 Errors and Uncaught Exceptions

One of the conveniences provided by Webware is the handling of uncaught exceptions. The response to an uncaught
exception is:

• Log the time, error, script name and traceback to standard output.

• Display a web page containing an apologetic message to the user.

• Save a technical web page with debugging information so that developers can look at it after-the-fact. These
HTML-based error messages are stored one-per-file, if the SaveErrorMessages setting is true (the default).
They are stored in the directory named by the ErrorMessagesDir (defaults to "ErrorMsgs").

• Add an entry to the error log, found by default in Logs/Errors.csv.

• E-mail the error message if the EmailErrors setting is true, using the settings ErrorEmailServer and
ErrorEmailHeaders. See Configuration for more information. You should definitely set these options when
deploying a web site.

Archived error messages can be browsed through the administration page.

Error handling behavior can be configured as described in Configuration.

8.9. Naming Conventions 31



Webware for Python 3, Release 3.0.9

8.11 Activity Log

Three options let you control:

• Whether or not to log activity (LogActivity, defaults to 0, i.e. off)

• The name of the file to store the log (ActivityLogFilename, defaults to Activity.csv)

• The fields to store in the log (ActivityLogColumns) </ul>

See the chapter on Configuration for more information.

8.12 Administration

Webware has a built-in administration page that you can access via the Admin context. You can see a list of all contexts
in the sidebar of any Example or Admin page.

The admin pages allows you to view Webware’s configuration, logs, and servlet cache, and perform actions such as
clearing the cache or reloading selected modules.

More sensitive pages that give control over the application require a user name and password, the username is admin,
and you can set the password with the AdminPassword setting in the Application.config file.

The administration scripts provide further examples of writing pages with Webware, so you may wish to examine their
source in the Admin context.

8.13 Debugging

8.13.1 Development Mode

When creating the Application instance, it takes a development flag as argument that defines whether it should run
in “development mode” or “production mode”. By default, if no such flag is passed, Webware checks whether the
environment varibale WEBWARE_DEVELOPMENT is set and not empty. When you run the development server using the
webware serve command, the flag is automatically set, so you are running in “development mode”, unless you add
the --prod option on the command line. The development flag is also available with the name Development in the
Application.config file and used to make some reasonable case distinctions depending on whether the application
is running in development mode. For instance, debugging information is only shown in development mode.

8.13.2 print

The most common technique is the infamous print statement which has been replaced with a print() function in
Python 3. The results of print() calls go to the console where the WSGI server was started (not to the HTML page
as would happen with CGI). If you specify AppLogFilename in Application.config, this will cause the standard
output and error to be redirected to this file.

For convenient debugging, the default Application.config file already uses the following conditional setting:

AppLogFilename = None if Development else 'Application.log'

This will prevent standard output and error from being redirected to the log file in development mode, which makes it
easier to find debugging output, and also makes it possible to use pdb (see below).

Prefixing the debugging output with a special tag (such as >>) is useful because it stands out on the console and you
can search for the tag in source code to remove the print statements after they are no longer useful. For example:

32 Chapter 8. Application Development



Webware for Python 3, Release 3.0.9

print('>> fields =', self.request().fields())

8.13.3 Raising Exceptions

Uncaught exceptions are trapped at the application level where a useful error page is saved with information such as
the traceback, environment, fields, etc. In development mode, you will see this error page directly. In production, you
can examine the saved page, and you can also configure the application to automatically e-mail you this information.

When an application isn’t behaving correctly, raising an exception can be useful because of the additional information
that comes with it. Exceptions can be coupled with messages, thereby turning them into more powerful versions of the
print() call. For example:

raise Exception(f'self = {self}')

While this is totally useful during development, giving away too much internal information is also a security risk, so you
should make sure that the application is configured properly and no such debugging output is ever shown in production.

8.13.4 Reloading the Development Server

When a servlet’s source code changes, it is reloaded. However, ancestor classes of servlets, library modules and con-
figuration files are not. You may wish to enable the auto-reloading feature when running the development server, by
adding the -r or --reload option to the webware serve command in order to mitigate this problem.

In any case, when having problems, consider restarting the development server (or the WSGI server you are running in
production).

Another option is to use the AppControl page of the Admin context to clear the servlet instance and class cache (see
Administration).

8.13.5 Assertions

Assertions are used to ensure that the internal conditions of the application are as expected. An assertion is equivalent
to an if statement coupled with an exception. For example:

assert shoppingCart.total() >= 0, \
f'shopping cart total is {shoppingCart.total()}'

8.13.6 Debugging using PDB

To use Python’s built-in debugger pdb, see the tip above about setting AppLogFilename for convenient debugging.

To have Webware automatically put you into pdb when an exception occurs, set this in your Application.config
file:

EnterDebuggerOnException = Development

A quick and easy way to debug a particular section of code is to add these lines at that point in the code:

import pdb
pdb.set_trace()

8.13. Debugging 33



Webware for Python 3, Release 3.0.9

8.13.7 Debugging in an IDE

You can also use PyCharm or other Python IDEs to debug a Webware application. To do this, first configure the IDE
to use the virtual environment where you installed Webware for Python.

Then, create the following script serve.py on the top level of your application working directory:

#!/usr/bin/python3

from webware.Scripts.WebwareCLI import main

main(['serve'])

Now run this file in your IDE in debug mode. For instance, in PyCharm, right-click on serve.py and select “Debug
‘serve’”.

Some IDEs like PyCharm can also debug remote processes. This could be useful to debug a test or production server.

8.14 Bootstrap Webware from Command line

You may be in a situation where you want to execute some part of your Webware applicaton from the command line,
for example to implement a cron job or maintenance script. In these situations you probably don’t want to instantiate a
full-fledged Application – some of the downsides are that doing so would cause standard output and standard error to
be redirected to the log file, and that it sets up the session sweeper, task manager, etc. But you may still need access to
plugins such as MiscUtils, MiddleKit, which you may not be able to import directly.

Here is a lightweight approach which allows you to bootstrap Webware and plugins:

import webware
app = webware.mockAppWithPlugins()

# now plugins are available...
import MiscUtils
import MiddleKit

8.15 How do I Develop an App?

The answer to that question might not seem clear after being deluged with all the details. Here’s a summary:

• Make sure you can run the development server. See the Quickstart for more information.

• Go through the Beginner Tutorial.

• Read the source to the examples (in the Examples subdirectory), then modify one of them to get your toes wet.

• Create your own new example from scratch. Ninety-nine percent of the time you will be subclassing the Page
class.

• Familiarize yourself with the class docs in order to take advantage of classes like Page, HTTPRequest, HTTPRe-
sponse and Session.

• With this additional knowledge, create more sophisticated pages.

• If you need to secure your pages using a login screen, you’ll want to look at the SecurePage, LoginPage, and
SecureCountVisits examples in Examples. You’ll need to modify them to suit your particular needs.

34 Chapter 8. Application Development



CHAPTER

NINE

CONFIGURATION

9.1 Application.config

The settings for the Application and a number of components that use it as a central point of configuration, are specified
in the Application.config file in the Configs directory of the application working directory.

9.1.1 General Settings

Contexts:
This dictionary maps context names to the directory holding the context content. Since the default contexts all
reside in Webware, the paths are simple and relative. The context name appears as the first path component of a
URL, otherwise Contexts['default'] is used when none is specified. When creating your own application,
you will add a key such as "MyApp"with a value such as "/home/apps/MyApp". That directory will then contain
content such as Main.py, SomeServlet.py, SomePage.psp, etc. webware make will set up a context for your use
as well. Default:

{
'default': 'Examples',
'Admin': 'Admin',
'Examples': 'Examples',
'Docs': 'Docs',
'Testing': 'Testing',

}

AdminPassword:
The password that, combined with the admin id, allows access to the AppControl page of the Admin context.
Set interactively when install.py is run (no default value).

PrintConfigAtStartUp:
Print the configuration to the console when the Application starts. Default: True (on).

PlugIns:
Loads the plug-ins with the given names when starting the Application. Default: ['MiscUtils',
'WebUtils', 'TaskKit', 'UserKit', 'PSP'].

CheckInterval:
The number of virtual instructions after which Python will check for thread switches, signal handlers, etc. This
is passed directly to sys.setcheckinterval() if not set to None. Default: None.

ResponseBufferSize:
Buffer size for the output response stream. This is only used when a servlet has set autoFlush to True using

35



Webware for Python 3, Release 3.0.9

the flush() method of the Response. Otherwise, the whole response is buffered and sent in one shot when the
servlet is done. Default: 8192.

WSGIWrite:
If this is set to True, then the write() callable is used instead of passing the response as an iterable, which would
be the standard WSGI mechanism. Default: True.

RegisterSignalHandler:
When the Application is regularly shut down, it tries to save its Sessions and stop the TaskManager. An atexit-
handler will do this automatically. You can also shut down the Application manually by calling its shutDown()
method. If this setting is set to True, then the Application will also register signal handlers to notice when it is
shutdown and shut down cleanly. However, as the mod_wsgi documentation explains (see section on WSGIRe-
strictSignal), “a well behaved Python WSGI application should not in general register any signal handlers of its
own using signal.signal(). The reason for this is that the web server which is hosting a WSGI application
will more than likely register signal handlers of its own. If a WSGI application were to override such signal
handlers it could interfere with the operation of the web server, preventing actions such as server shutdown and
restart.” Therefore, the default setting is: False.

9.1.2 Path Handling

These configuration settings control which files are exposed to users, which files are hidden, and some of how those
files get chosen.

DirectoryFile:
The list of basic filenames that Webware searches for when serving up a directory. Note that the extensions are
absent since Webware will look for a file with any appropriate extension (.py., .html, .psp, etc). Default:
["index", "Main"].

ExtensionsForPSP:
This is the list of extensions for files to be parsed as PSP. Default: ['.psp'].

ExtensionsToIgnore:
This is a list or set of extensions that Webware will ignore when autodetecting extensions. Note that this does
not prevent Webware from serving such a file if the extension is given explicitly in a URL. Default: {'.pyc',
'.pyo', '.py~', '.bak'}.

ExtensionsToServe:
This is a list of extensions that Webware will use exclusively when autodetecting extensions. Note that this does
not prevent Webware from serving such a file if it is named explicitly in a URL. If no extensions are given all
extensions will be served (usually anything but .py and .psp will be served as a static file). Default: [].

UseCascadingExtensions:
If False, Webware will give a 404 Not Found result if there is more than one file that could potentially match. If
True, then Webware will use the ExtensionCascadeOrder setting to determine which option to serve. Default:
True.

ExtensionCascadeOrder:
A list of extensions that Webware will choose, in order, when files of the same basename but different extensions
are available. Note that this will have no effect if the extension is given in the URL. Default: [".psp", ".py",
".html"].

FilesToHide:
A list or set of file patterns to protect from browsing. This affects all requests, and these files cannot be retrieved
even when the extension is given explicitly. Default: {".*", "*~", "*bak", "*.tmpl", "*.pyc", "*.
pyo", "*.config"}.

FilesToServe:
File patterns to serve from exclusively. If the file being served for a particular request does not match one of

36 Chapter 9. Configuration

https://modwsgi.readthedocs.io/en/develop/configuration-directives/WSGIRestrictSignal.html
https://modwsgi.readthedocs.io/en/develop/configuration-directives/WSGIRestrictSignal.html


Webware for Python 3, Release 3.0.9

these patterns an HTTP 403 Forbidden error will be return. This affects all requests, not just requests with
auto detected extensions. If set to [] then no restrictions are placed. Default: [].

9.1.3 Sessions

MemcachedNamespace:
The namespace used to prefix all keys from the Webware application when accessing Memcached servers for
storing sessions. You should change this if you are using the same memcache for different applications. Default:
'WebwareSession:'.

MemcachedOnIteration:
This setting determines how Webware behaves when attempting to iterate over the sessions or clear the session
store, when using Memcached. If you set it to Error, this will raise an Exception, when set to Warning, it will
print a Warning, when set to None, it will be ignored (the size of the session store will be always reported as
zero). Default: Warning.

MemcachedServers:
This sets the list of Memcached servers used when setting SessionStore to Memcached. Default:
['localhost:11211'].

RedisNamespace:
The namespace used to prefix all keys from the Webware application when accessing Redis servers for storing
sessions. You should change this if you are using the same Redis instance for different applications. Default:
'WebwareSession:'.

RedisHost:
This sets the Redis host that shall be used when setting SessionStore to Redis. Default: 'localhost'.

RedisPort:
This sets the port for the Redis connection that shall be used when setting SessionStore to Redis. Default:
6379.

RedisDb:
This sets the database number for the Redis connection that shall be used when setting SessionStore to Redis.
Default: 0.

RedisPassword:
This sets the password for the Redis connection that shall be used when setting SessionStore to Redis. Default:
None.

SessionModule:
Can be used to replace the standard Webware Session module with something else. Default: Session

SessionStore:
This setting determines which of five possible session stores is used by the Application: Dynamic, File,
Memcached, Memory, Redis or Shelve. The File store always gets sessions from disk and puts them back when
finished. Memory always keeps all sessions in memory, but will periodically back them up to disk. Dynamic is a
good cross between the two, which pushes excessive or inactive sessions out to disk. Shelve stores the sessions
in a database file using the Python shelve module, Memcached stores them on a Memcached system using the
python-memcached interface, and Redis stores them on a Redis system using the redis-py client. You can
use a custom session store module as well. Default: Dynamic.

SessionStoreDir:
If SessionStore is set to File, Dynamic or Shelve, then this setting determines the directory where the files
for the individual sessions or the shelve database will be stored. The path is interpreted as relative to the working
directory (or Webware path, if you’re not using a working directory), or you can specify an absolute path. Default:
Sessions.

9.1. Application.config 37



Webware for Python 3, Release 3.0.9

SessionTimeout:
Determines the amount of time (expressed in minutes) that passes before a user’s session will timeout. When a
session times out, all data associated with that session is lost. Default: 60.

AlwaysSaveSessions:
If False, then sessions will only be saved if they have been changed. This is more efficient and avoids problems
with concurrent requests made by the same user if sessions are not shared between these requests, as is the case
for session stores other than Memory or Dynamic. Note that in this case the last access time is not saved either,
so sessions may time out if they are not altered. You can call setDirty() on sessions to force saving unaltered
sessions in this case. If True, then sessions will always be saved. Default: True.

IgnoreInvalidSession:
If False, then an error message will be returned to the user if the user’s session has timed out or doesn’t exist. If
True, then servlets will be processed with no session data. Default: True.

UseAutomaticPathSessions:
If True, then the Application will include the session ID in the URL by inserting a component of the form
_SID_=8098302983 into the URL, and will parse the URL to determine the session ID. This is useful for situ-
ations where you want to use sessions, but it has to work even if the users can’t use cookies. If you use relative
paths in your URLs, then you can ignore the presence of these sessions variables. The name of the field can be
configured with the setting SessionName. Default: False.

UseCookieSessions:
If True, then the application will store the session ID in a cookie with the name set in SessionName, which is
usually _SID_. Default: True.

SessionCookiePath:
You can specify a path for the session cookie here. None means that the servlet path will be used, which is
normally the best choice. If you rewrite the URL using different prefixes, you may have to specify a fixed prefix
for all your URLs. Using the root path ‘/’ will always work, but may have security issues if you are running less
secure applications on the same server. Default: None.

SecureSessionCookie:
If True, then the Application will use a secure cookie for the session ID if the request was using an HTTPS
connection. Default: True.

HttpOnlySessionCookie:
If True, then the Application will set the HttpOnly attribute on the session cookie . Default: True.

SameSiteSessionCookie:
If not None, then the Application will set this value as the SameSite attribute on the session cookie . Default:
Strict.

MaxDynamicMemorySessions:
The maximum number of dynamic memory sessions that will be retained in memory. When this number is
exceeded, the least recently used, excess sessions will be pushed out to disk. This setting can be used to help
control memory requirements, especially for busy sites. This is used only if the SessionStore is set to Dynamic.
Default: 10000.

DynamicSessionTimeout:
The number of minutes of inactivity after which a session is pushed out to disk. This setting can be used to
help control memory requirements, especially for busy sites. This is used only if the SessionStore is set to
Dynamic. Default: 15.

SessionPrefix:
This setting can be used to prefix the session IDs with a string. Possible values are None (don’t use a prefix),
"hostname" (use the hostname as the prefix), or any other string (use that string as the prefix). You can use this
for load balancing, where each Webware server uses a different prefix. You can then use mod_rewrite or other

38 Chapter 9. Configuration

https://httpd.apache.org/docs/current/mod/mod_rewrite.html


Webware for Python 3, Release 3.0.9

software for load-balancing to redirect each user back to the server they first accessed. This way the backend
servers do not have to share session data. Default: None.

SessionName:
This setting can be used to change the name of the field holding the session ID. When the session ID is stored
in a cookie and there are applications running on different ports on the same host, you should choose different
names for the session IDs, since the web browsers usually do not distinguish the ports when storing cookies (the
port cookie-attribute introduced with RFC 2965 is not used). Default: _SID_.

ExtraPathInfo:
When enabled, this setting allows a servlet to be followed by additional path components which are ac-
cessible via HTTPRequest’s extraURLPath(). For subclasses of Page, this would be self.request().
extraURLPath(). Default: False.

UnknownFileTypes:
This setting controls the manner in which Webware serves “unknown extensions” such as .html, .css, .js, .gif,
.jpeg etc. The default setting specifies that the servlet matching the file is cached in memory. You may also
specify that the contents of the files shall be cached in memory if they are not too large.

If you are concerned about performance, use mod_rewrite to avoid accessing Webware for static content.

The Technique setting can be switched to "redirectSansAdapter", but this is an experimental setting with
some known problems.

Default:

{
'ReuseServlets': True, # cache servlets in memory
'Technique': 'serveContent', # or 'redirectSansAdapter'
# If serving content:
'CacheContent': False, # set to True for caching file content
'MaxCacheContentSize': 128*1024, # cache files up to this size
'ReadBufferSize': 32*1024 # read buffer size when serving files

}

9.1.4 Caching

CacheServletClasses:
When set to False, the Application will not cache the classes that are loaded for servlets. This is for development
and debugging. You usually do not need this, as servlet modules are reloaded if the file is changed. Default:
True (caching on).

CacheServletInstances:
When set to False, the Application will not cache the instances that are created for servlets. This is for develop-
ment and debugging. You usually do not need this, as servlet modules are reloaded and cached instances purged
when the servlet file changes. Default: True (caching on).

CacheDir:
This is the name of the directory where things like compiled PSP templates are cached. Webware creates a
subdirectory for every plug-in in this directory. The path is interpreted as relative to the working directory (or
Webware path, if you’re not using a working directory), or you can specify an absolute path. Default: Cache.

ClearPSPCacheOnStart:
When set to False, the Application will allow PSP instances to persist from one application run to the next. If
you have PSPs that take a long time to compile, this can give a speedup. Default: False (cache will persist).

9.1. Application.config 39

https://httpd.apache.org/docs/current/mod/mod_rewrite.html


Webware for Python 3, Release 3.0.9

ReloadServletClasses:
During development of an application, servlet classes will be changed very frequently. The AutoReload mech-
anism could be used to detect such changes and to reload modules with changed servlet classes, but it would
cause an application restart every time a servlet class is changed. So by default, modules with servlet classes are
reloaded without restarting the server. This can potentially cause problems when other modules are dependent
on the reloaded module because the dependent modules will not be reloaded. To allow reloading only using the
AutoReload mechanism, you can set ReloadServletClasses to False in such cases. Default: True (quick
and dirty reloading).

9.1.5 Errors

ShowDebugInfoOnErrors:
If True, then uncaught exceptions will not only display a message for the user, but debugging information for the
developer as well. This includes the traceback, HTTP headers, form fields, environment and process ids. You
will most likely want to turn this off when deploying the site for users. Default: True.

EnterDebuggerOnException:
If True, and if the AppServer is running from an interactive terminal, an uncaught exception will cause the
application to enter the debugger, allowing the developer to call functions, investigate variables, etc. See the
Python debugger (pdb) docs for more information. You will certainly want to turn this off when deploying the
site. Default: False (off).

IncludeEditLink:
If True, an “[edit]” link will be put next to each line in tracebacks. That link will point to a file of type
application/x-webware-edit-file, which you should configure your browser to run with bin/editfile.
py. If you set your favorite Python editor in editfile.py (e.g. editor = 'Vim'), then it will automatically
open the respective Python module with that editor and put the cursor on the erroneous line. Default: True.

IncludeFancyTraceback:
If True, then display a fancy, detailed traceback at the end of the error page. It will include the values of local
variables in the traceback. This makes use of a modified version of cgitb.py which is included with Webware
as CGITraceback.py. The original version was written by Ka-Ping Yee. Default: False (off).

FancyTracebackContext:
The number of lines of source code context to show if IncludeFancyTraceback is turned on. Default: 5.

UserErrorMessage:
This is the error message that is displayed to the user when an uncaught exception escapes a
servlet. Default: "The site is having technical difficulties with this page. An error has
been logged, and the problem will be fixed as soon as possible. Sorry!"

ErrorLogFilename:
The name of the file where exceptions are logged. Each entry contains the date and time, filename, pathname,
exception name and data, and the HTML error message filename (assuming there is one). Default: Errors.csv.

SaveErrorMessages:
If True, then errors (e.g., uncaught exceptions) will produce an HTML file with both the user message and
debugging information. Developers/administrators can view these files after the fact, to see the details of what
went wrong. These error messages can take a surprising amount of space. Default: True (do save).

ErrorMessagesDir:
This is the name of the directory where HTML error messages get stored. The path is interpreted as relative to
the working directory, or you can specify an absolute path.Default: ErrorMsgs.

EmailErrors:
If True, error messages are e-mailed out according to the ErrorEmailServer and ErrorEmailHeaders settings.
You must also set ErrorEmailServer and ErrorEmailHeaders. Default: False (false/do not email).

40 Chapter 9. Configuration



Webware for Python 3, Release 3.0.9

EmailErrorReportAsAttachment:
Set to True to make HTML error reports be emailed as text with an HTML attachment, or False to make the html
the body of the message. Default: False (HTML in body).

ErrorEmailServer:
The SMTP server to use for sending e-mail error messages, and, if required, the port, username and password,
all separated by colons. For authentication via “SMTP after POP”, you can furthermore append the name of a
POP3 server, the port to be used and an SSL flag. Default: 'localhost'.

ErrorEmailHeaders:
The e-mail headers used for e-mailing error messages. Be sure to configure "From", "To" and "Reply-To"
before turning EmailErrors on. Default:

{
'From': 'webware@mydomain,
'To': ['webware@mydomain'],
'Reply-To': 'webware@mydomain',
'Content-Type': 'text/html',
'Subject': 'Error'

}

ErrorPage:
You can use this to set up custom error pages for HTTP errors and any other exceptions raised in Webware
servlets. Set it to the URL of a custom error page (any Webware servlet) to catch all kinds of exceptions. If
you want to catch only particular errors, you can set it to a dictionary mapping the names of the corresponding
exception classes to the URL to which these exceptions should be redirected. For instance:

{
'HTTPNotFound': '/Errors/NotFound',
'CustomError': '/Errors/Custom'

}

If you want to catch any exceptions except HTTP errors, you can set it to:

{
'Exception': '/ErrorPage',
'HTTPException': None

}

Whenever one of the configured exceptions is thrown in a servlet, you will be automatically forwarded to the cor-
responding error page servlet. More specifically defined exceptions overrule the more generally defined. You can
even forward from one error page to another error page unless you are not creating loops. In an HTTPNotFound
error page, the servlet needs to determine the erroneous URI with self.request().previousURI(), since
the uri() method returns the URI of the current servlet, which is the error page itself. When a custom error
page is displayed, the standard error handler will not be called. So if you want to generate an error email or saved
error report, you must do so explicitly in your error page servlet. Default: None (no custom error page).

MaxValueLengthInExceptionReport:
Values in exception reports are truncated to this length, to avoid excessively long exception reports. Set this to
None if you don’t want any truncation. Default: 500.

RPCExceptionReturn:
Determines how much detail an RPC servlet will return when an exception occurs on the server side. Can take
the values, in order of increasing detail, "occurred", "exception" and "traceback". The first reports the
string "unhandled exception”, the second prints the actual exception, and the third prints both the exception
and accompanying traceback. All returns are always strings. Default: "traceback".

9.1. Application.config 41



Webware for Python 3, Release 3.0.9

ReportRPCExceptionsInWebware:
True means report exceptions in RPC servlets in the same way as exceptions in other servlets, i.e. in the logfiles,
the error log, and/or by email. False means don’t report the exceptions on the server side at all; this is useful if
your RPC servlets are raising exceptions by design and you don’t want to be notified. Default: True (do report
exceptions).

9.1.6 Logging

LogActivity:
If True, then the execution of each servlet is logged with useful information such as time, duration and whether
or not an error occurred. Default: True.

ActivityLogFilenames:
This is the name of the file that servlet executions are logged to. This setting has no effect if LogActivity is
False. The path can be relative to the Webware location, or an absolute path. Default: 'Activity.csv'.

ActivityLogColumns:
Specifies the columns that will be stored in the activity log. Each column can refer to an object from the set
[application, transaction, request, response, servlet, session] and then refer to its attributes using “dot notation”.
The attributes can be methods or instance attributes and can be qualified arbitrarily deep. Default: ['request.
remoteAddress', 'request.method', 'request.uri', 'response.size', 'servlet.name',
'request.timeStamp', 'transaction.duration', 'transaction.errorOccurred'].

AppLogFilename:
The Application redirects standard output and error to this file, if this is set in production mode. Default:
'Application.log'.

`LogDir:
The directory where log files should be stored. All log files without an explicit path will be put here. Default:
'Logs'.

Verbose:
If True, then additional messages are printed while the Application runs, most notably information about each
request such as size and response time. Default: True.

SilentURIs:
If Verbose is set to True, then you can use this setting to specify URIs for which you don’t want to print any
messages in the output of the Application. The value is expected to be a regular expression that is compared to
the request URI. For instance, if you want to suppress output for images, JavaScript and CSS files, you can set
SilentURIs to '\.(gif|jpg|jpeg|png|js|css)$' (though we do not recommend serving static files with
Webware; it’s much more efficient to deliver them directly from the Apache server). If set to None, messages
will be printed for all requests handled by Webware. Default: None

42 Chapter 9. Configuration



CHAPTER

TEN

DEPLOYMENT

Webware for Python 3 uses the Web Server Gateway Interface (WSGI) which allows deploying Webware apps with any
available WSGI server.

If your performance requirements are not that high, you can use waitress as WSGI server, which is used as the develop-
ment server for Webware, to serve your application on a production system as well. If your performance requirements
are higher, we recommend serving Webware applications using Apache and mod_wsgi. But there are also many other
options, and you can add caching, load balancing and other techniques or use a CDN to improve performance.

10.1 Installation on the Production System

In order to install your Webware for Python 3 application on the production system, first make sure the minimum
required Python 3.6 version is already installed. One popular and recommended option is running a Linux distribution
on your production system - see Installing Python 3 on Linux.

Next, we recommend creating a virtual environment for your Webware for Python 3 application. We also recommend
creating a dedicated user as owner of your application, and placing the virtual environment into the home directory of
that user. When you are logged in as that user under Linux, you can create the virtual environment with the following
command. If you get an error, you may need to install python3-venv as an additional Linux package before you can
run this command:

python3 -m venv .venv

This will create the virtual environment in the subdirectory .venv. Of course, you can also use a different name for that
directory. Now, install Webware for Python 3 into that virtual environment. Under Linux, you can do this as follows:

. .venv/bin/activate
pip install "Webware-for-Python>=3"

You will also need to install other Python packages required by your application into the virtual environment with pip,
unless these are provided as part of the application, e.g. in a Lib subdirectory of the application working directory. If
you want to use a Python-based WSGI server such as waitress, you need to install it into this virtual environment as
well:

pip install waitress

As the next step, you need to copy the application working directory containing your Webware for Python 3 application
to your production system. We recommend putting it into the directory where you created the virtual environment,
so that both are siblings. It is important that the application working directory is readable for the user that will run
the WSGI server, but not writable. For security reasons, we recommend running the WSGI server with as a dedicated
user with low privileges who is not the owner of the application working directory. The directory should also not be
readable to other users. The subdirectories of the application working directory should be readable only as well, except

43

https://wsgi.readthedocs.io/en/latest/learn.html
https://www.fullstackpython.com/wsgi-servers.html
https://docs.pylonsproject.org/projects/waitress/
https://httpd.apache.org/
https://modwsgi.readthedocs.io
https://www.mnot.net/cache_docs/
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://en.wikipedia.org/wiki/Content_delivery_network
https://docs.python-guide.org/starting/install3/linux/


Webware for Python 3, Release 3.0.9

for the Cache, ErrorMsgs, Logs and Sessions subdirectories, which must be writable. You can use the webware
make command to change the ownership of the application working directory to a certain user or group. You can also
run this command on an existing working directory that you copied to the production server. For instance, assuming
you activated the virtual environment with Webware for Python, and you have superuser privileges, you could make
the application accessible to the group www-data like this:

webware make -g www-data path-to-app-work-dir

We recommend using an automatic deployment solution such as Fabric for copying your application working directory
from your development or staging server to your production server. It is also possible to use Git hooks to deploy your
application with Git.

Also, make sure the virtual environment you created above is readable by the user running the WSGI server, e.g. by
using the same group ownership as above:

chgrp -R www-data .venv

10.2 Starting the WSGI Server on Boot

On a production system, you want to set up your system so that the WSGI server starts automatically when the system
boots. If you are using Apache and mod_wsgi, as explained further below, then you only need to make sure Apache
starts automatically, and you can skip this step.

There are a lot of options to start applications at boot time. First, you can use the startup system of your operating
system directly. We will show how this works using systemd as an example. Second, you can use one of the many
available process managers to start and control the WSGI server. We will show how this works using Supervisor.

10.2.1 Using systemd

We assume that you have already copied your application working directory to the production system as explained
above, and we assume you’re using waitress as your WSGI server. In order to make your application available as
a systemd service, you only need to add the following service file into the directory /etc/systemd/system. The
service file should be named something like webware.service or name-of-your-app.service if you’re running
multiple Webware applications:

[Unit]
Description=My Webware application
After=network.target
StartLimitIntervalSec=0

[Service]
Type=simple
Restart=on-failure
RestartSec=1
User=www-data
Group=www-data
ExecStart=path-to-virtual-env/bin/webware serve --prod
WorkingDirectory=path-to-app-work-dir

[Install]
WantedBy=multi-user.target

44 Chapter 10. Deployment

https://www.fabfile.org/
https://git-scm.com/
https://buddy.works/blog/how-deploy-projects-with-git
https://buddy.works/blog/how-deploy-projects-with-git
https://github.com/systemd/systemd
http://supervisord.org/
https://github.com/systemd/systemd


Webware for Python 3, Release 3.0.9

Adapt the options as needed. Description should be a meaningful description of your Webware application. With
User and Group you specify under which user and group your Webware application shall run, see the remarks above.
Adapt the EexecStart option so that it uses the path to your virtual environment, and specify the path to your ap-
plication working directory as the WorkingDirectory option. You can change the host address, port and add other
options to webware serve in the ExecStart option. By default, the server runs on port 8080, but you can specify a
different port using the -p option. If you want to run waitress behind a reverse proxy, for instance because you want
to run on port 80 which needs superuser privileges or you need TLS support which is not provided by waitress, then
you you need to serve only on the local interface, using options such as -l 127.0.0.1 -p 8080. The --prod option
tells Webware to run in production mode.

Note that if you use the --reload option with webware serve in ExecStart, then you should also set
KillMode=process and ExecStopPost=/bin/sleep 1 in the service file to make sure that Webware can be shut
down properly.

After adding or changing the service file, you need to run the following command so that systemd refreshes its config-
uration:

sudo systemctl daemon-reload

You tell systemd to automatically run your service file on system boot by enabling the service with the following
command:

sudo systemctl enable webware

If you named your service file differently, you need to specify that name instead of webware in this command. Likewise,
you can disable the service with:

sudo systemctl disable webware

To start the service manually, run this command:

sudo systemctl start webware

You can list errors that appeared while running the service using this command:

sudo journalctl -ru webware

The output of your application will be logged to the file Logs/Application.log inside the application working
directory if you did not specify anything else in the Webware application configuration.

To restart the service, you need to do this:

sudo systemctl restart webware

If you want to automatically restart the service whenever there are changes in the application working directory, you
can install a systemd path unit to watch the directory and run the above command whenever something changes. Alter-
natively, you can run webware serve with the --reload option. In that case, you also need to install hupper into the
virtual environment where you installed Webware, because it is used to implement the reload functionality. If you are
using a deployment tool such as Fabric, you can simply run the above command after deploying the application instead
of watching the directory for changes.

10.2. Starting the WSGI Server on Boot 45

https://www.redhat.com/sysadmin/introduction-path-units
https://github.com/Pylons/hupper
https://www.fabfile.org/


Webware for Python 3, Release 3.0.9

10.2.2 Using Supervisor

You can also use Supervisor to control your WSGI server. On many Linux distributions, Supervisor can be installed
with the package manager, but you can also install it manually using:

pip install supervisor

The disadvantage of such a manual installation is that you will also need to integrate it into the service management
infrastructure of your system manually, e.g. using a service file as explained above. Therefore we recommend that you
install the Linux package if it is available. For instance, on Ubuntu you would do this with:

sudo apt-get install supervisor

In the following, we assume that you installed Supervisor like this. You will then usually have a directory /etc/
supervisor with a subdirectory conf.d. Inside this subdirectory, create the following configuration file. The config-
uration file should be name something like webware.conf or name-of-your-app.conf if you’re running multiple
Webware applications:

[program:webware]
user=www-data
command=path-to-virtual-env/bin/webware serve --prod
directory=path-to-app-work-dir

You can add many more options to the configuration. Adapt the options above and add other options as needed. You may
want to change the section header [program:webware] to a more specific name if you are running multiple Webware
applications. The user options specifies which user shall run your Webware application. Adapt the command option
so that it uses the path to your virtual environment, and specify the path to your application working directory as the
directory option. You can change the host address, port and add other options to webware serve in the command
option. By default, the server runs on port 8080, but you can specify a different port using the -p option. If you want to
run waitress behind a reverse proxy, for instance because you want to run on port 80 which needs superuser privileges
or you need TLS support which is not provided by waitress, then you you need to serve only on the local interface,
using options such as -l 127.0.0.1 -p 8080. The --prod option tells Webware to run in production mode.

Reload the Supervisor configuration file and restart affected programs like this:

supervisorctl reread
supervisorctl update

This should automatically start the Webware application.

By default, the output of your application will be redirected to the file Logs/Application.log inside the application
working directory by Webware. You can change the location of this file using the Webware application configuration,
or you can also use Supervisor options to redirect the output to a log file and control that log file.

To show the process status of your application, run this command:

supervisorctl status webware

If you named the configuration section differently, you need to specify that name instead of webware in this command.
In order to restart the application, run this command:

supervisorctl restart webware

If you want to automatically restart whenever there are changes in the application working directory, you can for ex-
ample use Supervisor to run a separate program that watches the directory using inotify, and runs the above command
whenever something changes, or you can run webware serve with the --reload option. In that case, as explained
above, you also need to install hupper into the virtual environment where you installed Webware. If you are using

46 Chapter 10. Deployment

http://supervisord.org/
https://www.linuxjournal.com/content/linux-filesystem-events-inotify
https://github.com/Pylons/hupper


Webware for Python 3, Release 3.0.9

a deployment tool such as Fabric, you can simply run the above command after deploying the application instead of
watching the directory for changes.

10.3 Logfile Rotation

The application log file (which you will find in Logs/Application.log inside the application working directory by
default) will increase in size over time. We recommend configuring logrotate to rotate this log file, since this does
not happen automatically. On most Linux distributions, logrotate is already pre-installed and you just need to put a
configuration file like this into the folder /etc/logrotate.d:

path-to-app-work-dir/Logs/Application.log {
weekly
rotate 9
copytruncate
compress
dateext
missingok
notifempty
su www-data www-data

}

Modify the configuration as you see fit. The su directive should specify the user and the group under which the WSGI
server is running. Note that you can specify more than one log path and/or use wildcards, so that you can apply the
same configuration to several Webware applications and avoid repeating the same options.

Assuming you created the configuration file as /etc/logrotate.d/webware, you can test it with this command:

logrotate -f /etc/logrotate.d/webware

10.4 Running behind a Reverse Proxy

There are several reasons why you may want to run the WSGI server that is serving your Webware application behind
a reverse proxy. First, it can serve as a kind of load balancer, redirecting traffic to other applications or static files away
from your Webware application and request the WSGI server only for the dynamic content where it is really needed.
Second, it can provide TLS encryption in order to support HTTPS connections, compress data going in and out the
server, and cache frequently used content, and is optimized to do all of this very quickly. If you’re using the waitress
WSGI server, this is an important issue, since waitress itself does not provide TLS support. Third, a reverse proxy also
adds another security layer to your production system. In the following we show how you can use Apache and NGINX
as reverse proxy for your Webware application.

Again, if you are using Apache and mod_wsgi, as explained further below, then you normally don’t need a separate
proxy server, and you can skip this step.

10.3. Logfile Rotation 47

https://www.fabfile.org/
https://github.com/logrotate/logrotate
https://httpd.apache.org/
https://www.nginx.com/


Webware for Python 3, Release 3.0.9

10.4.1 Using Apache as Reverse Proxy

The first thing you need to do after installing Apache is to enable the Apache mod_proxy and mod_proxy_http modules.
You can usually do this as follows:

sudo a2enmod proxy proxy_http

At this point, you may want to enable other Apache modules as well. For instance, if you want to use encryption with
TLS (HTTPS connections), you need to also enable the mod_ssl module:

sudo a2enmod ssl

Maybe you want to enable some more modules providing load balancing capabilities, such as mod_proxy_balancer and
mod_lbmethod_byrequests. We won’t cover these modules in this deployment guide, but keep in mind that they are
available if you need to scale up.

Assuming you configured the WSGI server to run on port 8080 using the localhost interface 127.0.0.1, you now need
to add the following directives to your Apache configuration:

ProxyPass / http://127.0.0.1:8080/
ProxyPassReverse / http://127.0.0.1:8080/

Note: Do not set SSLProxyEngine On, even if you want to communicate via HTTPS with your clients. You would
only need this when the communication between Apache and the WSGI server is encrypted as well, which is usually
not necessary, particularly if you run the reverse proxy and the WSGI server on the same machine, and would only
work with WSGI servers that support encryption.

If you want to support encryption, you also need to create a server certificate and specify it in your Apache configuration.
For testing only, a self-signed certificate will do, which may be already installed and configured. In the Internet you
will find many instructions for creating a real server certificate and configuring Apache to use it.

Reload Apache after any changes you make to the configuration, e.g. with systemctl reload apache2 or
apachectl -k graceful.

The two lines of configuration above make Apache work as a reverse proxy for any URL, i.e. all traffic is passed on to
the WSGI server. This means that the WSGI server will also deliver any static assets that are part of your application,
like images, CSS scripts, JavaScript files or static HTML pages. This is inefficient and creates an unnecessary load on
the WSGI server. It is much more efficient if you let Apache serve the static assets. To achieve this, use the following
Apache configuration:

Alias /static path-to-app-work-dir/Static
<Directory path-to-app-work-dir/Static>

Require all granted
</Directory>
ProxyPass /static !
ProxyPass / http://127.0.0.1:8080/
ProxyPassReverse / http://127.0.0.1:8080/

With this configuration, you can access the static assets in the Static subdirectory of the application working directory
with the URL prefix /static, while everything else will be passed on to the WSGI server and handled by Webware
for Python.

You can also do it the other way around, e.g. let everything behind the prefix /app be handled by Webware for Python,
and everything else looked up as a static asset in the Static subdirectory of the application working directory, using
a configuration like this:

48 Chapter 10. Deployment

https://httpd.apache.org/
https://httpd.apache.org/docs/current/mod/mod_proxy.html
https://httpd.apache.org/docs/current/mod/mod_proxy_http.html
https://httpd.apache.org/docs/current/mod/mod_ssl.html
https://httpd.apache.org/docs/current/mod/mod_proxy_balancer.html
https://httpd.apache.org/docs/current/mod/mod_lbmethod_byrequests.html


Webware for Python 3, Release 3.0.9

DocumentRoot path-to-app-work-dir/Static
<Directory path-to-app-work-dir/Static>

Require all granted
</Directory>
ProxyPass /app http://127.0.0.1:8080/
ProxyPassReverse /app http://127.0.0.1:8080/

In this case, you should also tell the Webware application that you are using the /app prefix. If you are running the
waitress server with webware serve you can do so using the --url-prefix command line option:

webware serve -l 127.0.0.1 -p 8080 --url-prefix /app --prod

This prefix will then be passed to Webware in the SCRIPT_NAME environment variable, which is used when determining
the servletPath() of a Webware HTTPRequest.

Similarly, to tell Webware that you are using HTTPS connections, you can use the --url-scheme command line
option:

webware serve -l 127.0.0.1 -p 8080 --url-schema https --prod

You should then also add the following line to the Apache configuration:

RequestHeader set X-Forwarded-Proto https

If you want to override WSGI environment variables using proxy headers, you need to add the options
--trusted-proxy and trusted-proxy-headers to the webware serve command.

See also the remarks on running behind a reverse proxy in the waitress documentation.

10.4.2 Using NGINX as a Reverse Proxy

Frequently, NGINX is used instead of Apache as a reverse proxy, because it is more lightweight and performs a bit
better when serving static content. Contrary to Apache, you don’t need to enable any additional modules to make
NGINX work as a reverse proxy.

After installing NGINX and configuring the WSGI server to run on port 8080 using the localhost interface 127.0.0.1,
you now need to add the following lines to your NGINX configuration:

location /static {
alias path-to-app-work-dir/Static;

}

location / {
proxy_pass http://127.0.0.1:8080/;

proxy_set_header Host $host;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Host $host;
proxy_set_header X-Forwarded-Port $server_port;
proxy_set_header X-Real-IP $remote_addr;

}

10.4. Running behind a Reverse Proxy 49

https://docs.pylonsproject.org/projects/waitress/en/stable/reverse-proxy.html
https://docs.pylonsproject.org/projects/waitress/
https://www.nginx.com/
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-source/


Webware for Python 3, Release 3.0.9

If you want to support encryption, you also need to create a server certificate and specify it in your NGINX configuration.
For testing only, a self-signed certificate will do, which may be already installed. In the Internet you will find many
instructions for creating a real server certificate and configuring NGINX to use it.

After reloading the NGINX configuration, e.g. with nginx -s reload, NGINX should now act as a reverse proxy
and deliver your Webware application at the root URL, and static content in the Static subdirectory of the application
working directory with the URL prefix /static.

If you want to do it the other way around, i.e. serve any static assets at the root URL, and your Webware application
with the URL prefix /app, use this configuration instead:

root path-to-app-work-dir/Static

location / {
}

location /app {
proxy_pass http://127.0.0.1:8080/;

proxy_set_header Host $host;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Host $host;
proxy_set_header X-Forwarded-Port $server_port;
proxy_set_header X-Real-IP $remote_addr;

}

In this case, you should also tell the Webware application that you are using the /app prefix. If you are running the
waitress server with webware serve you can do so using the --url-prefix command line option:

webware serve -l 127.0.0.1 -p 8080 --url-prefix /app --prod

This prefix will then be passed to Webware in the SCRIPT_NAME environment variable, which is used when determining
the servletPath() of a Webware HTTPRequest.

If you want to override WSGI environment variables using proxy headers, you need to add the options
--trusted-proxy and trusted-proxy-headers to the webware serve command.

See also the remarks on running behind a reverse proxy in the waitress documentation.

10.5 Using Apache and mod_wsgi

While you can deploy Webware applications using the waitress WSGI server, as explained above, or run the application
with other possibly better performing WSGI servers, as explained further below, our recommended way of deploying
Webware application is using Apache and mod_wsgi, since it combines excellent performance with low installation
and maintenance effort. In particular, you will not need to care about running a separate WSGI server and starting it
automatically, because this is handled by mod_wsgi already, and you will not need to install a reverse proxy, because
you can use Apache to server the static content and dispatch to Webware via mod_wsgi for the dynamic content. The
Apache web server can also care about everything that is needed to serve your content securely via HTTPS.

The first thing you need is to make sure that Apache is installed on your production system with the “worker” MPM
module. On some systems, the “prefork” MPM module is still the default, but “worker” is much better suited for our
purposes. See also the section on processes and threading in the mod_wsgi documentation.

Next you will need to install mod_wsgi. If possible, install a version that is available as a binary package for your
system. There may be different versions of mod_wsgi available. Make sure you install the one for the Apache version

50 Chapter 10. Deployment

https://docs.pylonsproject.org/projects/waitress/en/stable/reverse-proxy.html
https://docs.pylonsproject.org/projects/waitress/
https://httpd.apache.org/
https://modwsgi.readthedocs.io
https://httpd.apache.org/docs/current/mod/worker.html
https://httpd.apache.org/docs/current/mod/worker.html
https://modwsgi.readthedocs.io/en/develop/user-guides/processes-and-threading.html
https://modwsgi.readthedocs.io/


Webware for Python 3, Release 3.0.9

running on your system and the Python version you are using in your Webware application. The package may be
called something like “apache2-mod_wsgi-python3” or “libapache2-mod-wsgi-py3”. If no suitable, current version of
mod_wsgi is available, you will need to install mood_wsgi from source.

After installation, the module should be already enabled, but to be sure, enable the mod_wsgi Apache module with the
following command:

sudo a2enmod wsgi

At this point, you may want to enable other Apache modules as well. For instance, if you want to use encryption with
TLS (HTTPS connections), you need to also enable the mod_ssl module:

sudo a2enmod ssl

In that case, you also need to create a server certificate and specify it in your Apache configuration. For testing only,
a self-signed certificate will do, which may be already installed and configured. In the Internet you will find many
instructions for creating a real server certificate and configuring Apache to use it.

Add the following lines to your Apache configuration in order to serve your Webware application under the root URL,
and static assets under the URL prefix /static:

Alias /static path-to-app-work-dir/Static

<Directory path-to-app-work-dir/Static>
Require all granted

</Directory>

WSGIDaemonProcess webware threads=20 python-home=path-to-virtual-env
WSGIProcessGroup webware

WSGIScriptAlias / path-to-app-work-dir/Scripts/WSGIScript.py

<Directory path-to-app-work-dir/Scripts>
Require all granted

</Directory>

Note that path-to-virtual-env should really be the path of the directory containing the virtual environment where
you installed Webware for Python 3 and other requirements for your Webware application, not the path to the Python
interpreter.

Reload Apache after any changes you make to the configuration, e.g. with systemctl reload apache2 or
apachectl -k graceful.

If you want to do it the other way around, i.e. serve any static assets at the root URL, and your Webware application
with the URL prefix /app, use this configuration instead:

DocumentRoot path-to-app-work-dir/Static

<Directory path-to-app-work-dir/Static>
Require all granted

</Directory>

WSGIDaemonProcess webware threads=20 python-home=path-to-virtual-env
WSGIProcessGroup webware

WSGIScriptAlias /app path-to-app-work-dir/Scripts/WSGIScript.py
(continues on next page)

10.5. Using Apache and mod_wsgi 51

https://modwsgi.readthedocs.io/en/develop/user-guides/quick-installation-guide.html
https://httpd.apache.org/docs/current/mod/mod_ssl.html


Webware for Python 3, Release 3.0.9

(continued from previous page)

<Directory path-to-app-work-dir/Scripts>
Require all granted

</Directory>

In this case, the prefix /app will be also passed to Webware by mod_wsgi in the SCRIPT_NAME environment variable,
and is considered when determining the servletPath() of a Webware HTTPRequest.

You can test the Apache configuration for errors with the command apache2ctl configtest. To debug problems
with mod_wsgi, you can also use these settings in the Apache configuration:

LogLevel info
WSGIVerboseDebugging On

A frequent problem is that the virtual environment into which you installed Webware uses a different Python version
than the one that the currently enabled mod_wsgi module was built for. In this case, re-create the virtual environment
with the proper Python version, or install a mod_wsgi module that was built for the Python version you are using in
your Webware application.

The output of your application will be logged to the file Logs/Application.log inside the application working
directory if you did not specify anything else in the Webware application configuration (see also Logfile Rotation).

Note that mod_wsgi can be operated in two modes, “embedded mode” and “daemon mode”. The above configuration
uses “daemon mode” which is the recommended mode for running Webware applications, even if “embedded mode”
is the default mode for historical reasons. The configuration creates one “process group” called “webware”. You can
adapt and optimize the configuration by setting various options, like this:

WSGIDaemonProcess webware \
user=www-data group=www-data \
threads=15 \
python-home=path-to-virtual-env \
display-name='%{GROUP}' \
lang='de_DE.UTF-8' locale='de_DE.UTF-8' \
queue-timeout=45 socket-timeout=60 connect-timeout=15 \
request-timeout=60 inactivity-timeout=0 startup-timeout=15 \
deadlock-timeout=60 graceful-timeout=15 eviction-timeout=0 \
restart-interval=0 shutdown-timeout=5 maximum-requests=0

You can also define more than one process group, and use different process groups for different applications. In this
case, mod_macro can be useful to avoid specifying the same options multiple times. It can be used like this to define
different groups with a different number of threads that are created in each daemon process:

<Macro WSGIProcess $name $threads>
WSGIDaemonProcess $name \
user=www-data group=www-data \
threads=$threads \
display-name='%{GROUP}' \
python-home=path-to-common-virtual-env \
lang='de_DE.UTF-8' locale='de_DE.UTF-8' \
queue-timeout=45 socket-timeout=60 connect-timeout=15 \
request-timeout=60 inactivity-timeout=0 startup-timeout=15 \
deadlock-timeout=60 graceful-timeout=15 eviction-timeout=0 \
restart-interval=0 shutdown-timeout=5 maximum-requests=0

</Macro>
(continues on next page)

52 Chapter 10. Deployment

https://httpd.apache.org/docs/current/mod/mod_macro.html


Webware for Python 3, Release 3.0.9

(continued from previous page)

Use WSGIProcess app1 25

WSGIScriptAlias /app1 \
path-to-app1-work-dir/Scripts/WSGIScript.py process-group=app1

<Directory path-to-app1-work-dir/Scripts>
Require all granted

</Directory>

Use WSGIProcess app2 10

WSGIScriptAlias /app2 \
path-to-app2-work-dir/Scripts/WSGIScript.py process-group=app2

<Directory path-to-app2-work-dir/Scripts>
Require all granted

</Directory>

In the above configurations, we are running only one process per process group, but multiple threads. The first app will
use 25 threads, while the second app will use only 10. The WSGI environment variable wsgi.multithreadwill be set
to True, while wsgi.multiprocess will be set to False. You can check these settings in your Webware application.
The ThreadedAppServer of the legacy Webware for Python 2 used the same single process, multiple threads model,
and is the recommended, tried and tested way to run Webware applications. But with Webware for Python 3, you can
also configure mod_wsgi and other WSGI servers to run Webware applications using multiple processes, each using
one or more threads. This may achieve better performance if you have many requests and your application is CPU-
bound, because the GIL in Python prevents CPU-bound threads from executing in parallel. For typical I/O-bound web
application, which spend most of their time waiting for the database, this is usually not a big problem. For certain
applications you may want to try out the multi process model, but you need to be aware of special precautions and
limitations that must be considered in this case. See the section Caveats of Multiprocessing Mode below and the
section on processes and threading in the mod_wsgi documentation.

If you want to restart the daemon process after deploying a new version of the Webware application to the application
working directory, you can do so by changing (touching) the WSGI file:

touch Scripts/WSGIScript.py

The mod_wsgi documentation also explains how to restart daemon processes by sending a SIGINT signal, which can
be also done by the Webware application itself, and it also explains how you can monitor your application for code
changes and automatically restart in that case.

10.5. Using Apache and mod_wsgi 53

https://realpython.com/python-gil/
https://modwsgi.readthedocs.io/en/develop/user-guides/processes-and-threading.html
https://modwsgi.readthedocs.io/
https://modwsgi.readthedocs.io/en/develop/user-guides/reloading-source-code.html#restarting-daemon-processes
https://modwsgi.readthedocs.io/en/develop/user-guides/reloading-source-code.html#monitoring-for-code-changes
https://modwsgi.readthedocs.io/en/develop/user-guides/reloading-source-code.html#monitoring-for-code-changes


Webware for Python 3, Release 3.0.9

10.6 Other WSGI servers

Depending on your production environment and the type of your application, it may make sense to deploy Webware
applications with other WSGI servers. In the following we will give some advice for configuring some of the more
popular WSGI servers to run Webware applications.

10.6.1 Using Bjoern as WSGI server

Bjoern is a fast, lightweight WSGI server for Python, written in C using Marc Lehmann’s high performance libev event
loop and Ryan Dahl’s http-parser.

You first need to install libev4 and libev-devel, then you can pip install bjoern into the virtual environment
where you already installed Webware.

In order to make use of Bjoern, you need to add the following at the end of the Scripts\WSGIScript.py file in the
application working directory:

from bjoern import run

run(application, 'localhost', 8088)

Since Bjoern does not support the WSGI write() callable, you must configure Webware to not use this mechanism,
by using the following settings at the top of the Scripts\WSGIScript.py:

settings = {'WSGIWrite': False}

A systemd unit file at /etc/systemd/system/bjoern.service could look like this:

[Unit]
Description=Bjoern WSGI server running Webware application
After=network.target
StartLimitIntervalSec=0

[Install]
WantedBy=multi-user.target

[Service]
User=www-data
Group=www-data
PermissionsStartOnly=true
WorkingDirectory=path-to-app-work-dir
ExecStart=path-to-virtual-env/bin/python Scripts/WSGIScript.py
TimeoutSec=600
Restart=on-failure
RuntimeDirectoryMode=775

You can then enable and run the service as follows:

systemctl enable bjoern
systemctl start bjoern

54 Chapter 10. Deployment

https://wsgi.readthedocs.io/en/latest/servers.html
https://github.com/jonashaag/bjoern
http://software.schmorp.de/pkg/libev.html
https://github.com/nodejs/http-parser


Webware for Python 3, Release 3.0.9

10.6.2 Using MeinHeld as WSGI server

MeinHeld is another lightweight, high performance WSGI server.

You first need to pip install meinheld into the virtual environment where you already installed Webware.

Add the following at the end of the Scripts\WSGIScript.py file in the application working directory in order to use
MeinHeld:

from meinheld import server

server.listen(("127.0.0.1", 8080))
server.run(application)

Similarly to Bjoern, you need to also adapt the settings at the top of the Scripts\WSGIScript.py file:

settings = {'WSGIWrite': False}

10.6.3 Using CherryPy as WSGI server

Cherrypy is a minimalist Python web framework that also contains a reliable, HTTP/1.1-compliant, WSGI thread-
pooled webserver.

TO make use of CherryPy’s WSGI server, add the following at the end of the Scripts\WSGIScript.py file in the
application working directory:

import cherrypy

cherrypy.tree.graft(application, '/')
cherrypy.server.unsubscribe()
server = cherrypy._cpserver.Server()
server.socket_host = '127.0.0.1'
server.socket_port = 8080
server.thread_pool = 30
server.subscribe()
cherrypy.engine.start()
cherrypy.engine.block()

10.6.4 Using uWSGI as WSGI server

The uWSGI project aims at developing a full stack for building hosting services, and it also contains a WSGI server
component.

You first need to pip install uwsgi into the virtual environment where you already installed Webware.

You can start the uWSGI server component as follows:

cd path-to-app-work-dir
. ../.venv/bin/activate
uwsgi --http-socket 127.0.0.1:8080 --threads 30 \\

--virtualenv path-to-virtual-env --wsgi-file Scripts/WSGIScript.py

You can also create a systemd file to run this automatically when the system boots, as explained above.

10.6. Other WSGI servers 55

https://github.com/mopemope/meinheld
https://cherrypy.org/
https://uwsgi-docs.readthedocs.io/en/latest/WSGIquickstart.html


Webware for Python 3, Release 3.0.9

Many more uWSGI configuration options are explained in the uWSGI documentation, we will not go into more details
here.

10.6.5 Using Gunicorn as WSGI server

Gunicorn is a fast WSGI server for Unix using a pre-fork worker model.

You first need to pip install gunicorn into the virtual environment where you already installed Webware.

You can start the Gunicorn WSGI server as follows:

cd path-to-app-work-dir
. ../.venv/bin/activate
PYTHONPATH=Scripts gunicorn -b 127.0.0.1:8080 WSGIScript:application

You can also create a systemd file to run this automatically when the system boots, as explained above.

Many more Gunicorn configuration options are explained in the Gunicorn documentation, we will not go into more
details here.

10.7 Sourceless Installs

When deploying a Webware application, you do not really need to copy the source code to the production system, it
suffices to deploy the compiled compiled Python files. Though this is actually not considered a good practice, and it
also does not really help to keep the source code secret (as it can be decompiled pretty easily), there may be reasons
why you still want to do this, for instance to impede casual users to tinker with your code on the server.

To do this, you first need to compile all your Python files in the application working directory:

cd path-to-app-work-dir
. ../.venv/bin/activate
python -OO -m compileall -b .

By activating the virtual environment, you make sure that you compile the source files with the proper Python version.
The -b option puts the compiled files as siblings to the source files using the .pyc extension, which is essential here.
The -OO option removes all assert statements and docstrings from the code.

If you want to serve contexts outside the application working directory, like the default Examples or Admin context,
you need to compile these as well, in a similar way.

You can now remove all the source files except the WSGI script and the __pycache__ directories, they are not needed
on the production system anymore:

cd path-to-app-work-dir
find . -type f -name '*.py' -delete -o \

-type d -name 'Scripts' -prune -o \
-type d -name __pycache__ -exec rm -rf {} \+

In order to make this work, you will also need to modify some settings in Configs/Application.config, like this:

ExtensionsToIgnore = {
'.py', '.pyo', '.tmpl', '.bak', '.py_bak',
'.py~', '.psp~', '.html~', '.tmpl~'

}
(continues on next page)

56 Chapter 10. Deployment

https://uwsgi-docs.readthedocs.io/en/latest/Options.html
https://gunicorn.org/
https://docs.gunicorn.org/en/latest/configure.html


Webware for Python 3, Release 3.0.9

(continued from previous page)

ExtensionCascadeOrder = ['.pyc', '.psp', '.html']
FilesToHide = {

'.*', '*~', '*.bak', '*.py_bak', '*.tmpl',
'*.py', '*.pyo', '__init__.*', '*.config'

}

10.8 Caveats of Multiprocessing Mode

As explained above, it is possible to operate mod_wsgi and some other WSGI servers in multiprocessing mode, where
several processes serve the same Webware application in parallel, or you can run several multithreaded WSGI servers
in parallel, maybe even on different machines, and use a load balancer as a reverse proxy to distribute the load between
the different servers.

This is totally doable, and may make sense in order to better utilize existing hardware. Because of the the GIL, a
multithreaded Python application will not be able to get the full performance from a multi-core machine when running
a CPU-bound application. However, there are some caveats that you need to be aware of:

• The Webware TaskManager will be started with every Application process. If this is not what you want, you can
change the RunTasks configuration setting to False, and run the TaskManager in a dedicated process.

• Some load balancers support “sticky sessions”, identifying clients by their session cookies and dispatching them
to the same server processes. But usually, in multiprocessing mode, you cannot guarantee that requests from
the same client are served by the same process, and it would also partially defeat the whole purpose of running
multiple processes. Therefore, the SessionMemoryStore, SessionFileStore and SessionDynamicStore are not
suitable in that mode, since the session data that is created in the local memory of one process will not be available
in a different process. Also, accessing session files from different processes simultaneously can be problematic.
Instead, we recommend changing the SessionStore configuration setting to use the SessionRedisStore or the
SessionMemcachedStore. Storing the session data in the database is also possible, but may degrade performance.

• When caching frequently used data in local memory, this will become less effective and waste memory when
running multiple processes. Consider using a distributed caching system such as Redis or Memcached instead. If
you are using the SessionRedisStore or the SessionMemcachedStore, you will need to install one of these systems
anyway.

• Webware applications often store global, application wide state in class attributes of servlet classes or elsewhere
in local memory. Again, be aware that this does not work anymore if you are running the same application in
multiple processes.

• Redirecting standard error and output to the same log file is not supported when running multiple processes, so
the LogFilename setting should be set to None, and a different logging mechanism should be used. When using
mod_wsgi you may need to use the WSGIRestrictStdout directive and log on that level. Future versions of
Webware for Python 3 will address this problem and provide proper logging mechanisms instead of just printing
to stdout.

10.8. Caveats of Multiprocessing Mode 57

https://realpython.com/python-gil/
https://redis.io/
https://memcached.org/


Webware for Python 3, Release 3.0.9

58 Chapter 10. Deployment



CHAPTER

ELEVEN

PLUG-INS

Webware for Python supports “plug-ins” to extend the framework and provide additional capabilities.

In Webware for Python 3, plug-ins are implemented as packages with metadata (“entry points”) through which they
can be automatically discovered, even if they have been installed independetly of Webware. You only need to specify
which plug-ins shall be loaded in the PlugIns configuration setting, and Webware will automatically load them if they
are installed.

Every Webware plug-in is a Python package, i.e. a directory that contains a __init__.py file and optionally other
files. As a Webware plugin, it must also contain a special Properties.py file. You can disable a specific plug-in by
placing a dontload file in its package directory.

If you want to distribute a Webware plug-in, you should advertize it as an entry point using the webware.plugins
identifier in the setup.py file used to install the plug-in.

The __init.py__ file of the plug-in must contain at least a function like this:

def installInWebware(application):
pass

The function doesn’t need to do anything, but this gives it the opportunity to do something with the global Webware
Application object. For instance, the PSP plugin uses addServletFactory.addServletFactory to add a handler
for .psp files.

The Properties.py file should contain a number of assignments:

name = "Plugin name"
version = (1, 0, 0)
status = 'beta'
requiredPyVersion = (3, 6)
requiredOpSys = 'posix'
synopsis = """A paragraph-long description of the plugin"""
webwareConfig = {

'examplePages': [
'Example1',
'ComplexExample',
]

}
def willRunFunc():

if softwareNotInstalled:
return "some message to that effect"

else:
return None

If you want to provide some examples for using your plug-in, they should be put in an Examples/ subdirectory.

59



Webware for Python 3, Release 3.0.9

A plugin who’s requiredPyVersion or requiredOpSys aren’t satisfied will simply be ignored. requiredOpSys
should be something returned by os.name, like posix or nt. Or you can define a function willRunFunc to test. If
there aren’t requirements you can leave these variables and functions out.

If you plan to write your own Webware plug-in, also have a look at our Style Guidelines and the source code of the
built-in plug-ins (PSP, TaskKit, UserKit, WebUtils, MiscUtils) which can serve as examples. We also recommend to
add some tests to your plug-in, see the section on Testing.

60 Chapter 11. Plug-ins



CHAPTER

TWELVE

STYLE GUIDELINES

12.1 Introduction

Style refers to various aspects of coding including indentation practices, naming conventions, use of design patterns,
treatment of constants, etc. One of the goals of Webware war to maintain fairly consistent coding style with respect to
certain basics as described in this document.

This document is therefore important for those who develop Webware itself or who wish to contribute code, although
ordinary users may still find it interesting and useful in understanding the Webware APIs.

Please keep in mind that Webware for Python was developed when modern Python features like properties and style
guidelines such as PEP8 did not yet exist. Therefore the API and code style used in Webware for Python may look a
bit antiquated today. However, we decided to keep the old API in Webware for Python 3, and still follow most of the
original style guidelines, in order to stay backward compatible and make migration of existing Webware for Python
apps as painless as possible.

12.2 Syntax and Naming

12.2.1 Methods and Attributes

Methods and attributes are an important topic because they are used so frequently and therefore have an impact on
using the classes, learning them, remembering them, etc.

The first thing that is important to understand is that Webware is constructed in an object-oriented fashion, including
full encapsulation of object attributes. In other words, you communicate and use objects completely via their methods
(except that classes and subclasses access their own attributes &ndash; somebody’s got to).

The primary advantages of using methods are:

• Method implementations can be changed with minimal impact on the users of the class.

• Subclasses can customize methods to suit their needs and still be used in the usual fashion (as defined by the
superclass).

In the case of a method that returns a value, that value may manifest in several ways:

1. Stored as attribute.

2. Stored as an attribute, only on demand (e.g., lazy and cached).

3. Computed upon every request.

4. Delegated to another object.

61



Webware for Python 3, Release 3.0.9

By requiring that object access is done solely through methods, the implementer of the class is free to switch between
the techniques above.

Keeping that in mind, it is apparent that naming conventions are needed for attributes, the methods that return them
and the methods that set them. Let’s suppose the basic “thing” is status. The convention then is:

• _status - the attribute

• status() - the retrieval method

• setStatus() - the setter method

The underscore that precedes the attribute denotes that it is semi-private and allows for a cleanly named retrieval method.
The status() and setStatus() convention originated many years ago with Smalltalk and proved successful with
that language as well as others, including Objective-C.

Some styles prefix the retrieval method with get, but Webware does not for the sake of brevity and because there are
methods for which it is not always clear if a get prefix would make sense.

Methods that return a Boolean are prefixed with is or has to make their semantics more obvious. Examples include
request.isSecure(), user.isActive() and response.hasHeader().

12.2.2 Method Categories

Webware classes divide their methods into logical groups called categories purely for organizational purposes. This
often helps in understanding the interface of a class, especially when looking at its summary.

Upon installation, Webware generates HTML summaries for each Python source file. See the summary of HTTPRe-
sponse for an example.

By convention, a category is named with a comment beginning with # region and ending with # endregion. IDEs such
as PyCharm will recognize these sections as foldable blocks.

12.2.3 Abbreviations

Using abbreviations is a common coding practice to reduce typing and make lines shorter. However, removing random
characters to abbreviate is a poor way to go about this. For example, transaction could be abbreviated as trnsact
or trnsactn, but which letters are left out is not obvious or easy to remember.

The typical technique in Webware is to use the first whole syllable of the word. For example, trans is easy to remember,
pronounce and type.

Attributes and methods that return the number of some kind of object are quite common. Suppose that the objects
in questions are requests. Possible styles include numRequests, numberOfRequests, requestCount and so on.
Webware uses the first style in all cases, for consistency:

numRequests

If there is a corresponding attribute, it should have the same name (prefixed by an underscore).

62 Chapter 12. Style Guidelines



Webware for Python 3, Release 3.0.9

12.2.4 Compound Names

Identifiers often consist of multiple names. There are three major styles for handling compound names:

1. serverSidePath - the Webware convention

2. serversidepath

3. server_side_path

Python itself used all three styles in the past (isSet, getattr, has_key), but Webware uses only the first which is
more readable than the second and easier to type that the third.

This rule also applies to class names such as HTTPRequest and ServletFactory.

12.2.5 Component Names

Names of object-oriented Webware components are often suffixed with Kit, as in UserKit and MiddleKit.

The occasional component that serves as a collective library (rather than an OO framework) is suffixed with Utils, as
in MiscUtils and WebUtils.

12.2.6 Rules

We follow PEP 8 and usual Python conventions with these exceptions (for historical reasons and to remain backward
compatible):

• Filenames are capitalized

• Method names are camelCase

• Attributes start with an underscore

• Getters and Setters for these attributes are ordinary methods.

• Setters use a “set” prefix, but getters do nt use a “get” prefix.

12.3 Structure and Patterns

12.3.1 Classes

Webware overwhelmingly uses classes rather than collections of functions for several reasons:

• Classes allow for subclassing and therefore, a proven method of software extension and customization.

• Classes allow for creating multiple instances (or objects) to be used in various ways. Examples include caching
created objects for increased performance and creating multi-threaded servers.

• Classes can provide for and encourage encapsulation of data, which gives implementers more freedom to improve
their software without breaking what depends on it.

By using classes, all three options above are available to the developer on an on-going basis. By using collections of
functions, none of the above are readily available.

Note that making classes in Python is extraordinarily easy. Doing so requires one line:

class Foo(SuperFoo):

12.3. Structure and Patterns 63



Webware for Python 3, Release 3.0.9

and the use of self when accessing attributes and methods. The difference in time between creating a class with
several methods vs. a set of several functions is essentially zero.

12.3.2 Configuration Files

Specific numbers and strings often appear in source code for determining things such as the size of a cache, the duration
before timeout, the name of the server and so on. Rather than place these values directly in source, Webware provides
configuration files that are easily discerned and edited by users, without requiring a walk through the source.

Webware uses ordinary Python dictionaries for configuration files for several reasons:

• Those who know Python will already understand the syntax.

• Python dictionaries can be quickly and easily read (via Python’s eval() function).

• Dictionaries can contain nested structures such as lists and other dictionaries, providing a richer configuration
language.

By convention, these configuration files:

• Contain a Python dictionary.

• Use a .config extension.

• Capitalize their keys.

• Are named after the class that reads them.

• Are located in a Configs/ subdirectory or in the same directory as the program.

Webware provides a Configurable mix-in class that is used to read configuration files. It allows subclasses to say
self.setting('Something') so that the use of configuration information is easy and recognizable throughout the
code.

12.3.3 Accessing Named Objects

Several classes in Webware store dictionaries of objects keyed by their name. HTTPRequest is one such class which
stores a dictionary of form fields. The convention for providing an interface to this information is as follows:

# region Fields
def field(self, name, default=_NoDefault):
def hasField(self, name):
def fields(self):

A typical use would be:

req.field('city')

which returns the field value of the given name or raises an exception if there is none. Like the get() method of
Python’s dictionary type, a second parameter can be specified which will be returned if the value is not found:

req.field('city', None)

req.hasField('city') is a convenience method that returns True if the value exists, False otherwise.

req.fields() returns the entire dictionary so that users have complete access to the full suite of dictionary methods
such as keys(), values(), items(), etc. Users of this method are trusted not to modify the dictionary in any way. A
paranoid class may choose to return a copy of the dictionary to help reduce abuse (although Webware classes normally
do not for performance reasons).

64 Chapter 12. Style Guidelines



Webware for Python 3, Release 3.0.9

In cases where the user of the class should be able to modify the named objects, the following methods are provided:

def setValue(self, name, value):
def delValue(self, name):

Often Python programmers will provide dictionary-style access to their objects by implementing __getitem__ so that
users may say:

req['city']

Webware generally avoids this approach for two reasons. The first and most important is that Webware classes often
have more than one set of named objects. For example, HTTPRequest has both fields and cookies. HTTPResponse
has both cookies and headers. These objects have their own namespaces, making the semantics of obj['name']
ambiguous. Also, the occasional class that has only one dictionary could potentially have more in the future.

The second reason is the readability provided by expressions such as response.cookie(name) which states clearly
what is being asked for.

In those cases where objects provide dictionary-like access, the class is typically a lightweight container that is naturally
thought of in terms of its dictionary components. Usually these classes inherit from dict.

12.3.4 Components

Webware consists of multiple components that follow particular conventions, not only for the sake of consistency, but
also to enable scripts to manipulate them (such as generating documentation upon installation).

Example components include PSP, TaskKit and MiscUtils.

These conventions are not yet formally documented, however if you quickly browse through a couple components,
some conventions about directory structure and source code become apparent.

Also, if a component serves as a Webware plug-in, then there are additional conventions for them to follow in order to
work correctly. See the chapter on Plug-ins for details.

12.3.5 Breaking the Rules

Of course, there are times when the rules are broken for good reason. To quote a cliché: “Part of being an expert is
knowing when to break the rules.”

But regarding style, Webware developers do this very infrequently for the reasons stated in the introduction.

12.3. Structure and Patterns 65



Webware for Python 3, Release 3.0.9

66 Chapter 12. Style Guidelines



CHAPTER

THIRTEEN

PSP

13.1 Summary

Python Server Pages (PSP) provides the capability for producing dynamic web pages for use with the Webware Python
Servlet engine simply by writing standard HTML. The HTML code is interspersed with special tags that indicate special
actions that should be taken when the page is served. The general syntax for PSP has been based on the popular Java
Server Pages specification used with the Java Servlet framework.

Since the Webware Servlets are analogous to Java Servlets, PSP provides a scripting language for use with it that
includes all of the power of Python. You will find that PSP compares favorably to other server side web scripting
languages, such as ASP, PHP and JSP.

Features of PSP include:

• Familiar Syntax (ASP, JSP, PHP)

• The power of Python as the scripting language

• Full access to the Webware Servlet API

• Flexible PSP Base Class framework

• Ability to add additional methods to the class produced by PSP

13.2 Feedback

The PSP for Webware project is fully open source. Help in all areas is encouraged and appreciated. Comments should
be directed to the Webware Discussion mailing list. This is a relatively low volume list and you are encouraged to join
the list if you wish to participate in the development of PSP or Webware, or if you plan on developing an application
using the framework.

13.3 General Overview

The general process for creating PSP files is similar to creating an HTML page. Simply create a standard HTML page,
interspersed with the special PSP tags that your needs require. The file should be saved with an extension of .psp.
Place this file in a directory that is served by Webware. When a request comes in for this page, it will be dynamically
compiled into a Webware servlet class, and an instance of this class will be instantiated to serve requests for that page.

There are two general types of PSP tags, <%...%> and <psp:...>. Each of these tags have special characteristics,
described below.

67



Webware for Python 3, Release 3.0.9

Whether or not you will need to include standard HTML tags in the start of your PSP page, such as <html>, <head>
etc. depends on the base class you choose for your PSP class. The default setup does not output any of those tags
automatically.

13.4 PSP Tags

The following tags are supported by the current PSP implementation.

13.4.1 Expression Tag – <%= expression %>

The expression tag simply evaluates some Python code and inserts its text representation into the HTML response. You
may include anything that will evaluate to a value that can be represented as a string inside the tag.

Example:

The current time is <%= time.time() >

When the PSP parsing engine encounters Expression tags, it wraps the contents in a call to the Python str() function.
Multiple lines are not supported in a PSP expression tag.

13.4.2 Script Tag – <% script code %>

The script tag is used to enclose Python code that should be run by the Webware Servlet runner when requests are
processed by the Servlet which this PSP page produces. Any valid Python code can be used in Script tags. Inside a
script tag, indentation is up to the author, and is used just like in regular Python (more info on blocks below). The PSP
Engine actually just outputs the strings in a Script tag into the method body that is being produced by this PSP page.

Example:

<% for i in range(5):
res.write("<b>This is number" + str(i) + "</b><br>") %>

The Python code within script tags has access to all local and class variables declared in the PSP page, as well as to all
variables of the enclosing class of this PSP page.

Special local variables that will be available in all PSP pages are:

req
The HTTRequest object for this page.

res
The HTTPResponse object for this page. The HTTPResponse object includes the write method that is used to
output HTML to the client.

trans
The Transaction object for this client request. The Transaction object provides access to the objects involved in
servicing this client request.

68 Chapter 13. PSP



Webware for Python 3, Release 3.0.9

Python Code Blocks that span PSP Script Tags

The Python code structure, which uses whitespace to signify blocks of code, presents a special challenge in PSP pages.
In order to allow for readable HTML code that does not impose restrictions on straight HTML within PSP pages, PSP
uses a special syntax to handle Python blocks that span script tags.

Automatic Blocks

Any script tag with Python code that ends with a colon (:) is considered to begin a block. A comment tag may follow
the colon. After this tag, any following HTML is considered to be part of the block begun within the previous script
tag. To end the block, insert a new script tag with the word “end” as the only statement.

Example of Script/HTML block:

<% for i in range(5): %> # the blocks starts here, no need for indenting the following␣
→˓HTML
<tr><td><%= i%></td></tr>
<% end %> The "end" statement ends the block

These blocks can be nested, with no need for special indentation, and each script tag that only contains a solitary end
statement will reduce the block indent by one.

Manual Blocks

It is also possible to force a block of HTML statements to be included in a block. You might want to do this if your start
a loop of some kind in a script tag, but need the first line of the loop to also be inside the script tag. In this case, the
automatic indenting described above wouldn’t notice the block, because the last line in the script tag wouldn’t be a “:”.
In this case, you need to end the script tag with $%>. When a script tag ends with $%>, the PSP Parser will indent the
following HTML at the same level as the last line of the script tag. To end this level of indentation, just start another
script tag. Easy.

Example of Manual Indention Script/HTML block:

<% for i in range(5):
icubed = i*i $%> # The following lines of straight HTML will be included in the␣

→˓same block this line is on
<tr><td><%= icubed%></td></tr>

<% pass %> # Any new script statement resets the HTML indentation level

You could also start a new script block that just continues at the same indentation level that the HTML and the previous
script block were at.

Braces

PSP also supports using braces to handle indentation. This goes against the grain of Python, we know, but is useful for
this specific application. To use this feature, specify it as you indentation style in a page directive, like so:

<%@page indentType="braces" %>

Now use braces to signify the start and end of blocks. The braces can span multiple script tags. No automatic indentation
will occur. However, you must use braces for all blocks! Tabs and spaces at the start of lines will be ignored and
removed!

Example:

13.4. PSP Tags 69



Webware for Python 3, Release 3.0.9

This is <i>Straight HTML</i><br>
<%
for i in range(5): { %> # Now I'm starting a block for this loop
z = i*i

%>
<!-- Now I'm ending the scripting tag that started the block,
but the following lines are still in the block -->
More straight HTML. But this is inside the loop started above.<br>
My i value is now <%= i %><br>
Now I will process it again.<br>
<%
v = z*z

%>
Now it is <%=v %>
<% } %> # End the block

13.4.3 File and Class Level Code – <psp:file> and <psp:class>

The file and class level script tag allows you to write Python code at the file (module) level or class level. For example,
at the file level, you might do imports statements, and some initialization that occurs only when the PSP file is loaded
the first time. You can even define other classes that are used in your PSP file.

Example:

<psp:file>
# Since this is at the module level, _log is only defined once for this file
import logging
_log = logging.getLogger( __name__ )

</psp:file>
<html>
<% _log.debug('Okay, Ive been called.') %>
<p>Write stuff here.</p>

</html>

At the class level you can define methods using ordinary Python syntax instead of the <psp:method > syntax below.

Example:

<psp:class>
def writeNavBar(self):
for uri, title in self.menuPages():

self.write( "<a href="%s">%s</a>" % (uri, title) )
</psp:class>

Indentation is adjusted within the file and class blocks. Just make your indentation consistent with the block, and
PSP will adjust the whole block to be properly indented for either the class or the file. For example file level Python
would normally have no indentation. But in PSP pages, you might want some indentation to show it is inside of the
<psp:file>...</psp:file> tags. That is no problem, PSP will adjust accordingly.

There is one special case with adding methods via the <psp:class> tag. The awake() method requires special
handling, so you should always use the <psp:method> tag below if you want to override the awake() method.

70 Chapter 13. PSP



Webware for Python 3, Release 3.0.9

13.4.4 Method Tag – <psp:method ...>

The Method tag is used to declare new methods of the Servlet class this page is producing. It will generally be more
effective to place method declarations in a Servlet class and then have the PSP page inherit from that class, but this tag
is here for quick methods. The Method tag may also be useful for over-riding the default functionality of a base class
method, as opposed to creating a Servlet class with only a slight change from another.

The syntax for PSP methods is a little different from that of other tags. The PSP Method declaration uses a compound
tag. There is a beginning tag <psp:method name="methname" params="param1, param2"> that designates the
start of the method definition and defines the method name and the names of its parameters. The text following this
tag is the actual Python code for the method. This is standard Python code, with indentation used to mark blocks and
no raw HTML support. It is not necessary to start the method definition with indentation, the first level of indention is
provided by PSP.

To end the method definition block, the close tag </psp:method> is used.

Example:

<psp:method name="MyClassMethod" params="var1, var2">
import string
return string.join((var1,var2),'')

</psp:method>

This is a silly function that just joins two strings. Please note that it is not necessary to declare the self parameter as
one of the function’s parameters. This will be done automatically in the code that PSP generates.

A PSP:Method can be declared anywhere in the psp sourcefile and will be available throughout the PSP file through
the standard self.PSPMethodName(parameters) syntax.

13.4.5 Include Tag – <psp:include ...>

The include tag pauses processing on the page and immediately passes the request on the the specified URL. The
output of that URL will be inserted into the output stream, and then processing will continue on the original page.
The main parameter is path, which should be set to the path to the resources to be included. This will be relative to
the current page, unless the path is specified as absolute by having the first character as “/”. The path parameter can
point to any valid url on this Webware application. This functionality is accomplished using the Webware Application’s
forwardRequestFast function, which means that the current Request, Response and Session objects will also be used
by the URL to which this request is sent.

Example:

<psp:include path="myfile.html">

13.4.6 Insert Tag – <psp:insert ...>

The insert tag inserts a file into the output stream that the psp page will produce, but does not parse that included file for
psp content. The main parameter is file, which should be set to the filename to be inserted. If the filename starts with a
“/”, it is assumed to be an absolute path. If it doesn’t start with a “/”, the file path is assumed to be relative to the psp file.
The contents of the insert file will not be escaped in any way except for triple-double-quotes (&quot;&quot;&quot;),
which will be escaped.

At every request of this servlet, this file will be read from disk and sent along with the rest of the output of the page.

This tag accepts one additional parameter, “static”, which can be set to “True” or “1”. Setting this attribute to True will
cause the inserted file’s contents to be embedded in the PSP class at generation time. Any subsequent changes to the
file will not be seen by the servlet.

13.4. PSP Tags 71



Webware for Python 3, Release 3.0.9

Example:

<psp:insert file="myfile.html">

13.5 Directives

Directives are not output into the HTML output, but instead tell the PSP parser to do something special. Directives
have at least two elements, the type of directive, and one or more parameters in the form of param="value" pairs.

Supported Directives include:

13.5.1 Page Directive – <%@ page ... %>

The page directive tells the PSP parser about special requirements of this page, or sets some optional output options
for this page. Directives set in page apply to the elements in the current PSP source file and to any included files.

Supported Page parameters:

• imports – The imports attribute of the page directive tells the PSP parser to import certain Python modules into
the PSP class source file.

The format of this directive is as follows:

Example: <%@ page imports="sys,os"%>

The value of the imports parameter may have multiple, comma separated items.

from X import Y is supported by separating the source package from the object to be imported with a colon
(:), like this:

Example: <%@ page imports="os:path" %>

This will import the path object from the os module.

Please note the = sign used in this directive. Those who are used to Python might try to skip it.

• extends – The extends attribute of the page tells the PSP parser what base class this Servlet should be derived
from.

The PSP servlet produced by parsing the PSP file will inherit all of the attributes and methods of the base class.

The Servlet will have access to each of those attributes and methods. They will still need to be accessed using
the “self” syntax of Python.

Example: <%@ page extends="MyPSPBaseClass"%>

This is a very powerful feature of PSP and Webware. The developer can code a series of Servlets that have
common functionality for a series of pages, and then use PSP and the extends attribute to change only the pieces
of that base servlet that are specific to a certain page. In conjunction with the method page attribute, described
below, and/or the <psp:method ...> tag, entire sites can be based on a few custom PSP base classes. The
default base class is PSPPage.py, which is inherited from the standard Webware Page.py servlet.

You can also have your PSP inherit from multiple base classes. To do this, separate the base classes using
commas, for example <%@ page extends="BaseClass1,BaseClass2"%>. If you use a base class in <%@
page extends="..."%> that is not specifically imported in a <%@ page imports="..."%> directive, the
base class will be assumed to follow the servlet convention of being in a file of the same name as the base class
plus the “.py” extension.

72 Chapter 13. PSP



Webware for Python 3, Release 3.0.9

• method – The method attribute of the page directive tells the PSP parser which method of the base class the
HTML of this PSP page should be placed in and override.

Example: <%@ page method="WriteHTML"%>

Standard methods are WriteHTML, of the standard HTTPServlet class, and writeBody, of the Page and
PSPPage classes. The default is writeBody. However, depending on the base class you choose for your PSP
class, you may want to override some other method.

• isThreadSafe – The isThreadSafe attribute of page tells the PSP parser whether the class it is producing
can be utilized by multiple threads simultaneously. This is analogous to the isThreadSafe function in Webware
servlets.

Example: <%@ page isThreadSafe="yes"%>

Valid values are “yes” and “no”. The default is “no”.

• isInstanceSafe – The isInstanceSafe attribute of the page directive tells the PSP parser whether one
instance of the class being produced may be used multiple times. This is analogous to the isInstanceSafe function
of Webware Servlets.

Example: <%@ page isInstanceSafe="yes"%>

Valid values are “yes” and “no”. The default is “yes”.

• indentType – The indentType attribute of the page directive tells the parser how to handle block indention in
the Python sourcefile it creates. The indentType attribute sets whether the sourcefile will be indented with tabs
or spaces, or braces. Valid values are “tabs”, “spaces” or “braces”. If this is set to “spaces”, see indentSpaces
for setting the number of spaces to be used (also, see blocks, below). The default is “spaces”.

Example: <%@ page indentType="tabs"%>

This is a bit of a tricky item, because many editors will automatically replace tabs with spaces in their output,
without the user realizing it. If you are having trouble with complex blocks, look at that first.

• indentSpaces – Sets the number of spaces to be used for indentation when indentType is set to spaces. The
default is “4”.

Example: <%@ page indentSpaces="8" %>

• gobbleWhitespace – The gobblewhitespace attribute of the page directive tells the PSP parser whether it
can safely assume that whitespace characters that it finds between two script tags can be safely ignored. This
is a special case directive. It applies when there are two script tags of some kind, and there is only whitespace
characters between the two tags. If there is only whitespace, the parser will ignore the whitespace. This is
necessary for multipart blocks to function correctly. For example, if you are writing an if/else block, you would
have your first script block that starts the if, and then you would end that block and start a new script block that
contains the else portion. If there is any whitespace between these two script blocks, and gobbleWhitespace
is turned off, then the parser will add a write statement between the two blocks to output the whitespace into the
page. The problem is that the write statement will have the indentation level of the start of the if block. So when
the else statement starts, it will not be properly associated with the preceding if, and you’ll get an error.

If you do need whitespace between two script blocks, use the &nbsp; code.

Example: <%@ page gobbleWhitspace="No"%>

Valid values are “yes” and “no”. The default is “yes”.

• formatter – The formatter attribute of the page directive can be used to specify an alternative formatter
function for <%= ... %> expression blocks. The default value is str. You might want to use this if certain
types need to be formatted in a certain way across an entire page; for example, if you want all integers to be
formatted with commas like “1,234,567” you could make that happen by specifying a custom formatter.

Example:

13.5. Directives 73



Webware for Python 3, Release 3.0.9

<%@ page imports="MyUtils" %>
<%@ page formatter="MyUtils.myFormatter" %>

13.5.2 Include Directive – <%@ include ... %>

The include directive tells the parser to insert another file at this point in the page and to parse it for psp content. It is
generally no problem to include an html file this way. However, if you do not want your include file to be parsed, you
may use the <psp:include ...> tag described above.

Example:

<%@ include file="myfile.txt"%>

13.6 Other Tags

• Declaration (<%! ... %>) – No need for this tag. Simply use script tags to declare local variables.

• Forwarding functionality is now available in Webware, but no tag based support has been added to PSP yet.

13.7 Developers

The original author of PSP is Jay Love and the project was later maintained by Jay and Geoff Talvola. The contributions
of the entire Webware community have been invaluable in improving this software.

Some architectural aspects of PSP were inspired by the Jakarta Project.

74 Chapter 13. PSP



CHAPTER

FOURTEEN

USERKIT

UserKit provides for the management of users including passwords, user data, server-side archiving and caching. Users
can be persisted on the server side via files or the external MiddleKit plug-in.

14.1 Introduction

UserKit is a self contained library and is generally not dependent on the rest of Webware. It does use a few functions
in MiscUtils. The objects of interest in UserKit are Users, UserMangers, and Roles.

User – This represents a particular user and has a name, password, and various flags like user.isActive().

UserManager – Your application will create one instance of a UserManager and use it to create and retrieve Users
by name. The UserManager comes in several flavors depending on support for Roles, and where user data is stored.
For storage, UserManagers can save the user records to either a flat file or a MiddleKit store. Also user managers may
support Roles or not. If you don’t need any roles and want the simplest UserManager, choose the UserManagerToFile
which saves its data to a file. If you want hierarchical roles and persistence to MiddleKit, choose RoleUserManager-
ToMiddleKit.

Role – A role represents a permission that users may be granted. A user may belong to several roles, and this is
queried using the method roleUser.playsRole(role). Roles can be hierarchical. For example a customers role
may indicate permissions that customers have. A staff role may include the customers role, meaning that members of
staff may also do anything that customers can do.

14.2 Examples and More Details

The docstrings in UserManager is the first place to start. It describes all the methods in UserManager. Then go to
the file Tests/TestExample.py which demonstrates how to create users, log them in, and see if they are members of
a particular role.

Once you get the idea, the docstrings in the various files may be perused for more details. See also the reference
documentation for an overview of the available classes and methods.

75



Webware for Python 3, Release 3.0.9

14.3 Encryption of Passwords

Generally one should never save users’ passwords anywhere in plain text. However UserKit intentionally does no
support encryption of passwords. That is left to how you use UserKit in your application. See TestExample.py, for
a demonstration of how easy this is using SHA digests to encrypt passwords. Basically you encrypt your password
before you give it to UserKit. It is as simple as this:

usermanager.createUser('johndoe', sha('buster').hexdigest())

This design decision is to decouple UserKit from your particular encryption requirements, and allows you to use more
advanced algorithms as they become available.

14.4 Credit

Author: Chuck Esterbrook, and a cast of dozens of volunteers. Thanks to Tom Schwaller for design help.

76 Chapter 14. UserKit



CHAPTER

FIFTEEN

TASKKIT

TaskKit provides a framework for the scheduling and management of tasks which can be triggered periodically or at
specific times. Tasks can also be forced to execute immediately, set on hold or rescheduled with a different period (even
dynamically).

To understand how TaskKit works, please read the following quick start article and have a look at the reference docu-
mentation. Also, in the “Task” subdirectory of Webware, you will find a real world use of this kit.

15.1 Scheduling with Python and Webware

The Webware for Python web application framework comes with a scheduling plug-in called TaskKit. This quick start
guide describes how to use it in your daily work with Webware and also with normal Python programs (slightly updated
version of an article contributed by Tom Schwaller in March 2001).

Scheduling periodic tasks is a very common activity for users of a modern operating system. System administrators
for example know very well how to start new cron jobs or the corresponding Windows analogues. So, why does a web
application framework like Webware need its own scheduling framework? The answer is simple: Because it knows
better how to react to a failed job, has access to internal data structures, which otherwise would have to be exposed to
the outside world and last but not least it needs scheduling capabilities anyway (e.g. for session sweeping and other
memory cleaning operations).

Webware is developed with the object oriented scripting language Python, so it seemed natural to write a general
purpose Python based scheduling framework. One could think that this problem is already solved (remember the Python
slogan: batteries included), but strange enough there has not much work been done in this area. The two standard Python
modules sched.py and bisect.py are way too simple, not really object oriented and also not multithreaded. This
was the reason to develop a new scheduling framework, which can not only be used with Webware but also with general
purpose Python programs. Unfortunately scheduling has an annoying side effect. The more you delve into the subject
the more it becomes difficult.

After some test implementations I discovered the Java scheduling framework of the “Ganymede” network directory
management system and took it as a model for the Python implementation. Like any other Webware plug-in the TaskKit
is self contained and can be used in other Python projects. This modularity is one of the real strengths of Webware and
in sharp contrast to Zope where people tend to think in Zope and not in Python terms. In a perfect world one should be
able to use web wrappers (for Zope, Webware, Quixote, . . . ) around clearly designed Python classes and not be forced
to use one framework. Time will tell if this is just a dream or if people will reinvent the “Python wheels” over and over
again.

77



Webware for Python 3, Release 3.0.9

15.2 Tasks

The TaskKit implements the three classes Scheduler, TaskHandler and Task. Let’s begin with the simplest one, i.e.
Task. It’s an abstract base class, from which you have to derive your own task classes by overriding the run()-method
like in the following example:

from time import strftime, localtime
from TaskKit.Task import Task

class SimpleTask(Task):

def run(self):
print self.name(), strftime("%H:%M:%S", localtime())

self.name() returns the name under which the task was registered by the scheduler. It is unique among all tasks
and scheduling tasks with the same name will delete the old task with that name (so beware of that feature!). Another
simple example which is used by Webware itself is found in Tasks/SessionTask.py:

from TaskKit.Task import Task

class SessionTask(Task):

def __init__(self, sessions):
Task.__init__(self)
self._sessionstore = sessions

def run(self):
if self.proceed():

self._sessionstore.cleanStaleSessions(self)

Here you see the proceed() method in action. It can be used by long running tasks to check if they should terminate.
This is the case when the scheduler or the task itself has been stopped. The latter is achieved with a stopTask()
call which is not recommended though. It’s generally better to let the task finish and use the unregister() and
disable() methods of the task handler. The first really deletes the task after termination while the second only
disables its rescheduling. You can still use it afterwards. The implementation of proceed() is very simple:

def proceed(self):
"""Check whether this task should continue running.

Should be called periodically by long tasks to check if the system
wants them to exit. Returns True if its OK to continue, False if
it's time to quit.

"""
return self._handle._isRunning

Take a look at the SimpleTask class at the end of this article for an example of using proceed(). Another thing to
remember about tasks is, that they know nothing about scheduling, how often they will run (periodically or just once)
or if they are on hold. All this is managed by the task wrapper class TaskHandler, which will be discussed shortly.
Let’s look at some more examples first.

78 Chapter 15. TaskKit



Webware for Python 3, Release 3.0.9

15.3 Generating static pages

On a high traffic web site (like slashdot) it’s common practice to use semi-static page generation techniques. For example
you can generate the entry page as a static page once per minute. During this time the content will not be completely
accurate (e.g. the number of comments will certainly increase), but nobody really cares about that. The benefit is
a dramatic reduction of database requests. For other pages (like older news with comments attached) it makes more
sense to generate static versions on demand. This is the case when the discussion has come to an end, but somebody
adds a comment afterwards and implicitly changes the page by this action. Generating a static version will happen very
seldom after the “hot phase” when getting data directly out of the database is more appropriate. So you need a periodic
task which checks if there are new “dead” stories (e.g. no comments for 2 days) and marks them with a flag for static
generation on demand. It should be clear by now, that an integrated Webware scheduling mechnism is very useful for
this kind of things and the better approach than external cron jobs. Let’s look a little bit closer at the static generation
technique now. First of all we need a PageGenerator class. To keep the example simple we just write the actual date
into a file. In real life you will assemble much more complex data into such static pages.

from time import asctime
from TaskKit.Task import Task

html = '''<html>
<head><title>%s</title></head>
<body bgcolor="white">
<h1>%s</h1>
</body>
</html>
'''

class PageGenerator(Task):

def __init__(self, filename):
Task.__init__(self)
self._filename = filename

def run(self):
f = open(self._filename, 'w')
f.write(html % ('Static Page', asctime()))
f.close()

15.3.1 Scheduling

That was easy. Now it’s time to schedule our task. In the following example you can see how this is accomplished with
TaskKit. As a general recommendation you should put all your tasks in a separate folder (with an empty __init__.py
file to make this folder a Python package). First of all we create a new Scheduler object, start it as a thread and add a
periodic page generation object (of type PageGenerator) with the addPeriodicAction method. The first parameter
here is the first execution time (which can be in the future), the second is the period (in seconds), the third an instance
of our task class and the last parameter is a unique task name which allows us to find the task later on (e.g. if we want
to change the period or put the task on hold).

from time import sleep, time
from TaskKit.Scheduler import Scheduler
from Tasks.PageGenerator import PageGenerator

def main():
(continues on next page)

15.3. Generating static pages 79

https://slashdot.org


Webware for Python 3, Release 3.0.9

(continued from previous page)

scheduler = Scheduler()
scheduler.start()
scheduler.addPeriodicAction(time(), 5, PageGenerator('static.html'), 'PageGenerator')
sleep(20)
scheduler.stop()

if __name__ == '__main__':
main()

When you fire up this example you will notice that the timing is not 100% accurate. The reason for this seems to
be an imprecise wait() function in the Python threading module. Unfortunately this method is indispensible
because we need to be able to wake up a sleeping scheduler when scheduling new tasks with first execution times
smaller than scheduler.nextTime(). This is achieved through the notify() method, which sets the notifyEvent
(scheduler._notifyEvent.set()). On Unix we could use sleep and a signal to interrupt this system call, but
TaskKit has to be plattform independent to be of any use. But don’t worry; this impreciseness is not important for
normal usage, because we are talking about scheduling in the minute (not second) range here. Unix cron jobs have a
granularity of one minute, which is a good value for TaskKit too. Of course nobody can stop you starting tasks with a
period of one second (but you have been warned that this is not a good idea, except for testing purposes).

15.4 Generating static pages again

Let’s refine our example a little bit and plug it into Webware. We will write a Python servlet which loks like this:

When you click on the Generate button a new periodic PageGenerator task will be added to the Webware scheduler.
Remember that this will generate a static page static.html every 60 seconds (if you use the default values). The
new task name is "PageGenerator for filename", so you can use this servlet to change the settings of already
scheduled tasks (by rescheduling) or add new PageGenerator tasks with different filenames. This is quite useless
here, but as soon as you begin to parametrize your Task classes this approach can become quite powerful (consider
for example a mail reminder form or collecting news from different news channels as periodic tasks with user defined
parameters). In any case, don’t be shy and contribute other interesting examples (the sky’s the limit!).

Finally we come to the servlet code, which should be more or less self explanatory, except for the _action_ construct
which is very well explained in the Webware documentation though (just in case you forgot that). app.taskManager()
gives you the Webware scheduler, which can be used to add new tasks. In real life you will have to make the scheduling
information persistent and reschedule all tasks after a Webware server restart because it would be quite annoying to
enter this data again and again.

from time import time
from ExamplePage import ExamplePage
from Tasks.PageGenerator import PageGenerator

class Schedule(ExamplePage):

def writeContent(self):
self.write('''

<center><form method="post">
<input type="submit" name="_action_ value=Generate">
<input type="text" name="filename" value="static.html" size="16"> every
<input type="text" name="seconds" value="60" size="4"> seconds
</form>
<table style="width:28em;margin-top:6px">

(continues on next page)

80 Chapter 15. TaskKit



Webware for Python 3, Release 3.0.9

(continued from previous page)

<tr style="background-color:009">
<th colspan="2" style="color:#fff">Task List</th></tr>
<tr style="background-color:#ddd">
<td><b>Task Name</b></td>
<td><b>Period</b></td></tr>''')

for taskname, handler in self.application().taskManager().scheduledTasks().
→˓items():

self.write('''
<tr><td>%s</td><td>%s</td></tr>''' % (taskname, handler.period()))

self.write('''
</table></center>''')

def generate(self, trans):
app = self.application()
tm = app.taskManager()
req = self.request()
if req.hasField('filename') and req.hasField('seconds'):

self._filename = req.field('filename')
self._seconds = int(req.field('seconds'))
task = PageGenerator(app.serverSidePath('Examples/' + self._filename))
taskname = 'PageGenerator for ' + self._filename
tm.addPeriodicAction(time(), self._seconds, task, taskname)

self.writeBody()

def methodNameForAction(self, name):
return name.lower()

def actions(self):
return ExamplePage.actions(self) + ['generate']

15.5 The Scheduler

Now it’s time to take a closer look at the Scheduler class itself. As you have seen in the examples above, writ-
ing tasks is only a matter of overloading the run() method in a derived class and adding it to the scheduler with
addTimedAction, addActionOnDemand, addDailyAction or addPeriodicAction. The scheduler will wrap
the Task in a TaskHandler structure which knows all the scheduling details and add it to its _scheduled or _onDemand
dictionaries. The latter is populated by addActionOnDemand and contains tasks which can be called any time by
scheduler.runTaskNow('taskname') as you can see in the following example. After that the task has gone.

scheduler = Scheduler()
scheduler.start()
scheduler.addActionOnDemand(SimpleTask(), 'SimpleTask')
sleep(5)
print "Demanding SimpleTask"
scheduler.runTaskNow('SimpleTask')
sleep(5)
scheduler.stop()

If you need a task more than one time it’s better to start it regularly with one of the add*Action methods first. It
will be added to the _scheduled dictionary. If you do not need the task for a certain time disable it with scheduler.
disableTask('taskname') and enable it later with scheduler.enableTask('taskname'). There are some more

15.5. The Scheduler 81



Webware for Python 3, Release 3.0.9

methods (e.g. demandTask(), stopTask(), ...) in the Scheduler class which are all documented by docstrings.
Take a look at them and write your own examples to understand the methods.

When a periodic task is scheduled it is added in a wrapped version to the _scheduled dictionary first. The (most of
the time sleeping) scheduler thread always knows when to wake up and start the next task whose wrapper is moved
to the _runnning dictionary. After completion of the task thread the handler reschedules the task (by putting it back
from _running to _scheduled), calculating the next execution time nextTime and possibly waking up the sched-
uler. It is important to know that you can manipulate the handle while the task is running, e.g. change the period or
call runOnCompletion to request that a task be re-run after its current completion. For normal use you will prob-
ably not need the handles at all, but the more you want to manipulate the task execution, the more you will appre-
ciate the TaskHandler API. You get all the available handles from the scheduler with the running('taskname'),
scheduled('taskname') and onDemand('taskname') methods.

In our last example which was contributed by Jay Love, who debugged, stress tested and contributed a lot of refine-
ments to TaskKit, you see how to write a period modifying Task. This is quite weird but shows the power of handle
manipulations. The last thing to remember is that the scheduler does not start a separate thread for each periodic task.
It uses a thread for each task run instead and at any time keeps the number of threads as small as possible.

class SimpleTask(Task):

def run(self):
if self.proceed():

print self.name(), time()
print "Increasing period"
self.handle().setPeriod(self.handle().period() + 2)

else:
print "Should not proceed", self.name()

As you can see, the TaskKit framework is quite sophisticated and will hopefully be used by many people from the
Python community. If you have further question, please feel free to ask them on the Webware mailing list.

15.6 Credit

Authors: Tom Schwaller, Jay Love

Based on code from the Ganymede Directory Management System written by Jonathan Abbey.

82 Chapter 15. TaskKit



CHAPTER

SIXTEEN

WEBUTILS

The WebUtils package is a basic set of modules for common web related programming tasks such as encoding/decoding
HTML, dealing with Cookies, etc.

See the reference documentation for an overview of the available functions.

16.1 HTMLForException

This module defines a function by the same name:

def htmlForException(excInfo=None, options=None):
...

htmlForException returns an HTML string that presents useful information to the developer about the exception. The
first argument is a tuple such as returned by sys.exc_info() which is in fact, invoked if the tuple isn’t provided. The
options parameter can be a dictionary to override the color options in HTMLForExceptionOptions which is currently
defined as:

HTMLForExceptionOptions = {
'table': 'background-color:#f0f0f0',
'default': 'color:#000',
'row.location': 'color:#009',
'row.code': 'color:#900',

}

A sample HTML exception string looks like this:

16.2 HTTPStatusCodes

This module provides a list of well known HTTP status codes in list form and in a dictionary that can be keyed by code
number or identifier.

You can index the HTTPStatusCodes dictionary by code number such as 200, or identifier such as OK. The dictionary
returned has keys 'code', 'identifier' and 'htmlMsg'. An 'asciiMsg' key is provided, however, the HTML
tags are not yet actually stripped out.

The htmlTableOfHTTPStatusCodes() function returns a string which is exactly that: a table containing the
HTTPStatusCodes defined by the module. You can affect the formatting of the table by specifying values for the
arguments. It’s highly recommended that you use key=value arguments since the number and order could easily
change in future versions. The definition is:

83



Webware for Python 3, Release 3.0.9

def htmlTableOfHTTPStatusCodes(
codes=HTTPStatusCodeList,
tableArgs='', rowArgs='style="vertical-align:top"',
colArgs='', headingArgs=''):

...

If you run the script, it will invoke htmlTableOfHTTPStatusCodes() and print its contents with some minimal
HTML wrapping. You could do this:

> cd Webware/Projects/WebUtils
> python HTTPStatusCodes.py > HTTPStatusCodes.html

And then open the HTML file in your favorite browser.

84 Chapter 16. WebUtils



CHAPTER

SEVENTEEN

MISCUTILS

The MiscUtils package provides support classes and functions to Webware that aren’t necessarily web-related and that
don’t fit into one of the other frameworks. There is plenty of useful reusable code here.

See the reference documentation for an overview of the available functions.

85



Webware for Python 3, Release 3.0.9

86 Chapter 17. MiscUtils



CHAPTER

EIGHTEEN

TESTING

In this section we want to give some advice on testing Webware applications and Webware itself.

18.1 Testing Webware itself

The unit tests and end to end tests for Webware for Python can be found in the Tests subdirectories of the root webware
package and its plug-ins. Webware also has a built-in context Testing that contains some special servlets for testing
various functionality of Webware, which can be invoked manually, but will also be tested automatically as part of the
end-to-end tests.

Before running the test suite, install Webware for Python into a virtual environment and activate that environment.
While developing and testing Webware, it is recommended to install Webware in editable mode. To do this, unpack the
source installation package of Webware for Python 3, and run this command in the directory containing the setup.py
file:

pip install -e .[tests]

Next, change into the directory containing the main Webware package:

cd webware

To test everything, run:

python -m unittest discover -p Test*.py

To test everything, and stop on the first failing test:

python -m unittest discover -p Test*.py -f

To test everything, and print verbose output:

python -m unittest discover -p Test*.py -v

To test only UserKit:

python -m unittest discover -p Test*.py -vs UserKit

To test only the example servlets in the default context:

python -m unittest discover -p TestExamples.py -vs Tests.TestEndToEnd

87



Webware for Python 3, Release 3.0.9

You can also use tox as a test runner. The Webware source package already contains a suitable tox.ini configuration
file for running the unit tests with all supported Python versions, and also running a few additional code quality checks.
Make sure to use current versions of _tox and _virtualenv when running the tests.

18.2 Testing Webware applications

We recommend writing tests for your Webware applications as well, using either Python’s built-in unittest framework,
or the excellent pytest testing tool.

You should create unit tests for your supporting code (your own library packages in your application working directory),
and also end-to-end tests for the servlets that make up your web application (the contexts in your application working
directory).

For writing end-to-end tests we recommend using the WebTest package. This allows testing your Webware applications
end-to-end without the overhead of starting an HTTP server, by making use of the fact that Webware applications are
WSGI compliant. Have a look at the existing tests for the built-in contexts in the Tests/TestEndToEnd directory of
Webware for Python 3 in order to understand how you can make use of WebTest and structure your tests.

88 Chapter 18. Testing

https://tox.readthedocs.io/en/latest/
https://docs.python.org/3/library/unittest.html
https://docs.pytest.org/en/latest/
https://docs.pylonsproject.org/projects/webtest/en/latest/


CHAPTER

NINETEEN

API REFERENCE

19.1 Core Classes

19.1.1 Application

The Application singleton.

Application is the main class that sets up and dispatches requests. This is done using the WSGI protocol, so an
AppServer class is not needed and not contained in Webware for Python anymore. Application receives the input
via WSGI and turns it into Transaction, HTTPRequest, HTTPResponse, and Session.

Settings for Application are taken from Configs/Application.config, which is used for many global settings, even
if they aren’t closely tied to the Application object itself.

class Application.Application(path=None, settings=None, development=None)
Bases: ConfigurableForServerSidePath

The Application singleton.

Purpose and usage are explained in the module docstring.

__init__(path=None, settings=None, development=None)
Sets up the Application.

You can specify the path of the application working directory, a dictionary of settings to override in the
configuration, and whether the application should run in development mode.

In the setting ‘ApplicationConfigFilename’ you can also specify a different location of the application con-
figuration file.

addContext(name, path)
Add a context by named name, rooted at path.

This gets imported as a package, and the last directory of path does not have to match the context name.
(The package will be named name, regardless of path).

Delegated to URLParser.ContextParser.

static addServletFactory(factory)
Add a ServletFactory.

Delegated to the URLParser.ServletFactoryManager singleton.

89



Webware for Python 3, Release 3.0.9

addShutDownHandler(func)
Add a shutdown handler.

Functions added through addShutDownHandler will be called when the Application is shutting down. You
can use this hook to close database connections, clean up resources, save data to disk, etc.

callMethodOfServlet(trans, url, method, *args, **kw)
Call method of another servlet.

Call a method of the servlet referred to by the URL. Calls sleep() and awake() before and after the method
call. Or, if the servlet defines it, then runMethodForTransaction is used (analogous to the use of runTrans-
action in forward).

The entire process is similar to forward, except that instead of respond, method is called (method should
be a string, *args and **kw are passed as arguments to that method).

commandLineConfig()

Return the settings that came from the command-line.

These settings come via addCommandLineSetting().

config()

Return the configuration of the object as a dictionary.

This is a combination of defaultConfig() and userConfig(). This method caches the config.

configFilename()

The configuration file path.

configName()

Return the name of the configuration file without the extension.

This is the portion of the config file name before the ‘.config’. This is used on the command-line.

configReplacementValues()

Get config values that need to be escaped.

contexts()

Return a dictionary of context-name: context-path.

static createRequestForDict(requestDict)
Create request object for a given dictionary.

Create a request object (subclass of Request) given the raw dictionary as passed by the web server via
WSGI.

The class of the request may be based on the contents of the dictionary (though only HTTPRequest is
currently created), and the request will later determine the class of the response.

Called by dispatchRawRequest.

createSessionForTransaction(trans)
Get the session object for the transaction.

If the session already exists, returns that, otherwise creates a new session.

Finding the session ID is done in Transaction.sessionId.

createSessionWithID(trans, sessionID)

Create a session object with our session ID.

90 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

defaultConfig()

The default Application.config.

development()

Whether the application shall run in development mode

dispatchRawRequest(requestDict, strmOut)
Dispatch a raw request.

Dispatch a request as passed from the web server via WSGI.

This method creates the request, response, and transaction objects, then runs (via runTransaction) the trans-
action. It also catches any exceptions, which are then passed on to handleExceptionInTransaction.

errorPage(errorClass)
Get the error page url corresponding to an error class.

forward(trans, url)
Forward the request to a different (internal) URL.

The transaction’s URL is changed to point to the new servlet, and the transaction is simply run again.

Output is _not_ accumulated, so if the original servlet had any output, the new output will _replace_ the
old output.

You can change the request in place to control the servlet you are forwarding to – using methods like
HTTPRequest.setField.

handleException()

Handle exceptions.

This should only be used in cases where there is no transaction object, for example if an exception occurs
when attempting to save a session to disk.

handleExceptionInTransaction(excInfo, trans)
Handle exception with info.

Handles exception excInfo (as returned by sys.exc_info()) that was generated by transaction. It may display
the exception report, email the report, etc., handled by ExceptionHandler.ExceptionHandler.

handleMissingPathSession(trans)
Redirect requests without session info in the path.

If UseAutomaticPathSessions is enabled in Application.config we redirect the browser to an absolute url
with SID in path http://gandalf/a/_SID_=2001080221301877755/Examples/ _SID_ is extracted and re-
moved from path in HTTPRequest.py

This is for convenient building of webapps that must not depend on cookie support.

Note that we create an absolute URL with scheme and hostname because otherwise IIS will only cause an
internal redirect.

handlePathSession(trans)
Handle the session identifier that has been found in the path.

handleUnnecessaryPathSession(trans)
Redirect request with unnecessary session info in the path.

This is called if it has been determined that the request has a path session, but also cookies. In that case we
redirect to eliminate the unnecessary path session.

19.1. Core Classes 91

http://gandalf/a/_SID_=2001080221301877755/Examples/


Webware for Python 3, Release 3.0.9

hasContext(name)
Checks whether context name exist.

hasSession(sessionId)
Check whether session sessionId exists.

hasSetting(name)
Check whether a configuration setting has been changed.

includeURL(trans, url)
Include another servlet.

Include the servlet given by the URL. Like forward, except control is ultimately returned to the servlet.

initErrorPage()

Initialize the error page related attributes.

initSessions()

Initialize all session related attributes.

initVersions()

Get and store versions.

Initialize attributes that stores the Webware version as both tuple and string. These are stored in the Prop-
erties.py files.

loadPlugIn(name, module)
Load and return the given plug-in.

May return None if loading was unsuccessful (in which case this method prints a message saying so). Used
by loadPlugIns (note the s).

loadPlugIns()

Load all plug-ins.

A plug-in allows you to extend the functionality of Webware without necessarily having to modify its source.
Plug-ins are loaded by Application at startup time, just before listening for requests. See the docs in PlugIn
for more info.

makeDirs()

Make sure some standard directories are always available.

static name()

The name by which this was started. Usually Application.

numRequests()

Return the number of requests.

Returns the number of requests received by this application since it was launched.

outputEncoding()

Get the default output encoding of this application.

plugIn(name, default=<class 'MiscUtils.NoDefault'>)
Return the plug-in with the given name.

plugIns()

Return a dictionary of the plug-ins loaded by the application.

Each plug-in is a PlugIn object with an underlying Python package.

92 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

printConfig(dest=None)
Print the configuration to the given destination.

The default destination is stdout. A fixed with font is assumed for aligning the values to start at the same
column.

printStartUpMessage()

Print a little intro to the activity log.

static readConfig(filename)
Read the configuration from the file with the given name.

Raises an UIError if the configuration cannot be read.

This implementation assumes the file is stored in utf-8 encoding with possible BOM at the start, but also
tries to read as latin-1 if it cannot be decoded as utf-8. Subclasses can override this behavior.

registerShutDownHandler()

Register shutdown handler in various ways.

We want to make sure the shutdown handler is called, so that the application can save the sessions to disk
and do cleanup tasks.

static removePathSession(trans)
Remove a possible session identifier from the path.

static resolveInternalRelativePath(trans, url)
Return the absolute internal path.

Given a URL, return the absolute internal URL. URLs are assumed relative to the current URL. Absolute
paths are returned unchanged.

static returnServlet(servlet)
Return the servlet to its pool.

rootURLParser()

Accessor: the Root URL parser.

URL parsing (as defined by subclasses of URLParser.URLParser) starts here. Other parsers are called in
turn by this parser.

runTransaction(trans)
Run transaction.

Executes the transaction, handling HTTPException errors. Finds the servlet (using the root parser, probably
URLParser.ContextParser, to find the servlet for the transaction, then calling runTransactionViaServlet.

Called by dispatchRawRequest.

static runTransactionViaServlet(servlet, trans)
Execute the transaction using the servlet.

This is the awake/respond/sleep sequence of calls, or if the servlet supports it, a single runTransaction call
(which is presumed to make the awake/respond/sleep calls on its own). Using runTransaction allows the
servlet to override the basic call sequence, or catch errors from that sequence.

Called by runTransaction.

19.1. Core Classes 93



Webware for Python 3, Release 3.0.9

serverSidePath(path=None)
Get the server-side path.

Returns the absolute server-side path of the Webware application. If the optional path is passed in, then it
is joined with the server side directory to form a path relative to the working directory.

session(sessionId, default=<class 'MiscUtils.NoDefault'>)
The session object for sessionId.

Raises KeyError if session not found and no default is given.

sessionCookiePath(trans)
Get the cookie path for this transaction.

If not path is specified in the configuration setting, the servlet path is used for security reasons, see: https:
//www.helpnetsecurity.com/2004/06/27/cookie-path-best-practice/

sessionName(_trans)
Get the name of the field holding the session ID.

Overwrite to make this transaction dependent.

sessionPrefix(_trans)
Get the prefix string for the session ID.

Overwrite to make this transaction dependent.

sessionTimeout(_trans)
Get the timeout (in seconds) for a user session.

Overwrite to make this transaction dependent.

sessions()

A dictionary of all the session objects.

setSetting(name, value)
Set a particular configuration setting.

setting(name, default=<class 'MiscUtils.NoDefault'>)
Return setting, using the server side path when indicated.

Returns the setting, filtered by self.serverSidePath(), if the name ends with Filename or Dir.

shutDown()

Shut down the application.

Called when the interpreter is terminated.

sigTerm(_signum, _frame)
Signal handler for terminating the process.

startSessionSweeper()

Start session sweeper.

Starts the session sweeper, Tasks.SessionTask, which deletes session objects (and disk copies of those ob-
jects) that have expired.

startTime()

Return the time the application was started.

The time is given as seconds, like time().

94 Chapter 19. API Reference

https://www.helpnetsecurity.com/2004/06/27/cookie-path-best-practice/
https://www.helpnetsecurity.com/2004/06/27/cookie-path-best-practice/


Webware for Python 3, Release 3.0.9

taskManager()

Accessor: TaskKit.Scheduler instance.

userConfig()

Return the user config overrides.

These settings can be found in the optional config file. Returns {} if there is no such file.

The config filename is taken from configFilename().

webwarePath()

Return the Webware path.

webwareVersion()

Return the Webware version as a tuple.

webwareVersionString()

Return the Webware version as a printable string.

writeActivityLog(trans)
Write an entry to the activity log.

Writes an entry to the script log file. Uses settings ActivityLogFilename and ActivityLogColumns.

writeExceptionReport(handler)
Write extra information to the exception report.

See ExceptionHandler for more information.

exception Application.EndResponse

Bases: Exception

End response exception.

Used to prematurely break out of the awake()/respond()/sleep() cycle without reporting a traceback. During
servlet processing, if this exception is caught during awake() or respond() then sleep() is called and the response
is sent. If caught during sleep(), processing ends and the response is sent.

__init__(*args, **kwargs)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

19.1.2 ConfigurableForServerSidePath

class ConfigurableForServerSidePath.ConfigurableForServerSidePath

Bases: Configurable

Configuration file functionality incorporating a server side path.

This is a version of MiscUtils.Configurable.Configurable that provides a customized setting method for classes
which have a serverSidePath method. If a setting’s name ends with Filename or Dir, its value is passed through
serverSidePath before being returned.

In other words, relative filenames and directory names are expanded with the location of the object, not the
current directory.

19.1. Core Classes 95



Webware for Python 3, Release 3.0.9

Application is a prominent class that uses this mix-in. Any class that has a serverSidePath method and a Con-
figurable base class, should inherit this class instead.

This is used for MakeAppWorkDir, which changes the serverSidePath.

__init__()

commandLineConfig()

Return the settings that came from the command-line.

These settings come via addCommandLineSetting().

config()

Return the configuration of the object as a dictionary.

This is a combination of defaultConfig() and userConfig(). This method caches the config.

configFilename()

Return the full name of the user config file.

Users can override the configuration by this config file. Subclasses must override to specify a name. Re-
turning None is valid, in which case no user config file will be loaded.

configName()

Return the name of the configuration file without the extension.

This is the portion of the config file name before the ‘.config’. This is used on the command-line.

configReplacementValues()

Return a dictionary for substitutions in the config file.

This must be a dictionary suitable for use with “string % dict” that should be used on the text in the config
file. If an empty dictionary (or None) is returned, then no substitution will be attempted.

defaultConfig()

Return a dictionary with all the default values for the settings.

This implementation returns {}. Subclasses should override.

hasSetting(name)
Check whether a configuration setting has been changed.

printConfig(dest=None)
Print the configuration to the given destination.

The default destination is stdout. A fixed with font is assumed for aligning the values to start at the same
column.

static readConfig(filename)
Read the configuration from the file with the given name.

Raises an UIError if the configuration cannot be read.

This implementation assumes the file is stored in utf-8 encoding with possible BOM at the start, but also
tries to read as latin-1 if it cannot be decoded as utf-8. Subclasses can override this behavior.

setSetting(name, value)
Set a particular configuration setting.

96 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

setting(name, default=<class 'MiscUtils.NoDefault'>)
Return setting, using the server side path when indicated.

Returns the setting, filtered by self.serverSidePath(), if the name ends with Filename or Dir.

userConfig()

Return the user config overrides.

These settings can be found in the optional config file. Returns {} if there is no such file.

The config filename is taken from configFilename().

19.1.3 Cookie

class Cookie.Cookie(name, value)
Bases: object

Delicious cookies.

Cookie is used to create cookies that have additional attributes beyond their value.

Note that web browsers don’t typically send any information with the cookie other than its value. Therefore
HTTPRequest.cookie simply returns a value such as an integer or a string.

When the server sends cookies back to the browser, it can send a cookie that simply has a value, or the cookie
can be accompanied by various attributes (domain, path, max-age, . . . ) as described in RFC 2109. Therefore, in
HTTPResponse, setCookie can take either an instance of the Cookie class, as defined in this module, or a value.

Note that Cookie values get pickled (see the pickle module), so you can set and get cookies that are integers, lists,
dictionaries, etc.

__init__(name, value)
Create a cookie.

Properties other than name and value are set with methods.

comment()

delete()

Delete a cookie.

When sent, this should delete the cookie from the user’s browser, by making it empty, expiring it in the
past, and setting its max-age to 0. One of these will delete the cookie for any browser (which one actually
works depends on the browser).

domain()

expires()

headerValue()

Return header value.

Returns a string with the value that should be used in the HTTP headers.

httpOnly()

isSecure()

maxAge()

19.1. Core Classes 97

ftp://ftp.isi.edu/in-notes/rfc2109.txt


Webware for Python 3, Release 3.0.9

name()

path()

sameSite()

setComment(comment)

setDomain(domain)

setExpires(expires)

setHttpOnly(httpOnly=True)

setMaxAge(maxAge)

setPath(path)

setSameSite(sameSite='Strict')

setSecure(secure=True)

setValue(value)

setVersion(version)

value()

version()

19.1.4 ExceptionHandler

Exception handling.

class ExceptionHandler.ExceptionHandler(application, transaction, excInfo, formatOptions=None)
Bases: object

Exception handling.

ExceptionHandler is a utility class for Application that is created to handle a particular exception. The object is
a one-shot deal. After handling an exception, it should be removed.

At some point, the exception handler sends writeExceptionReport to the transaction (if present), which in turn
sends it to the other transactional objects (application, request, response, etc.) The handler is the single argument
for this message.

Classes may find it useful to do things like this:

exceptionReportAttrs = ['foo', 'bar', 'baz']
def writeExceptionReport(self, handler):

handler.writeTitle(self.__class__.__name__)
handler.writeAttrs(self, self.exceptionReportAttrs)

The handler write methods that may be useful are:

• write

• writeTitle

• writeDict

98 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

• writeAttrs

Derived classes must not assume that the error occurred in a transaction. self._tra may be None for exceptions
outside of transactions.

HOW TO CREATE A CUSTOM EXCEPTION HANDLER

In the __init__.py of your context:

from ExceptionHandler import ExceptionHandler as _ExceptionHandler

class ExceptionHandler(_ExceptionHandler):

_hideValuesForFields = _ExceptionHandler._hideValuesForFields + [
'foo', 'bar']

def work(self):
_ExceptionHandler.work(self)
# do whatever
# override other methods if you like

def contextInitialize(app, ctxPath):
app._exceptionHandlerClass = ExceptionHandler

You can also control the errors with settings in Application.config.

__init__(application, transaction, excInfo, formatOptions=None)
Create an exception handler instance.

ExceptionHandler instances are created anew for each exception. Instantiating ExceptionHandler completes
the process – the caller need not do anything else.

basicServletName()

The base name for the servlet (sans directory).

emailException(htmlErrMsg)
Email the exception.

Send the exception via mail, either as an attachment, or as the body of the mail.

errorPageFilename()

Create filename for error page.

Construct a filename for an HTML error page, not including the ErrorMessagesDir setting (which saveEr-
ror adds on).

filterDictValue(value, key, _dict)
Filter dictionary values.

Filters keys from a dict. Currently ignores the dictionary, and just filters based on the key.

filterValue(value, key)
Filter values.

This is the core filter method that is used in all filtering. By default, it simply returns self._hiddenString
if the key is in self._hideValuesForField (case insensitive). Subclasses could override for more elaborate
filtering techniques.

19.1. Core Classes 99



Webware for Python 3, Release 3.0.9

htmlDebugInfo()

Return the debug info.

Return HTML-formatted debugging information on the current exception. Calls writeHTML, which uses
self.write(...) to add content.

logExceptionToConsole(stderr=None)
Log an exception.

Logs the time, servlet name and traceback to the console (typically stderr). This usually results in the
information appearing in console/terminal from which the Application was launched.

logExceptionToDisk(errorMsgFilename=None)
Log the exception to disk.

Writes a tuple containing (date-time, filename, pathname, exception-name, exception-data, error report
filename) to the errors file (typically ‘Errors.csv’) in CSV format. Invoked by handleException.

privateErrorPage()

Return a private error page.

Returns an HTML page intended for the developer with useful information such as the traceback.

Most of the contents are generated in htmlDebugInfo.

publicErrorPage()

Return a public error page.

Returns a brief error page telling the user that an error has occurred. Body of the message comes from
UserErrorMessage setting.

repr(value)
Get HTML encoded representation.

Returns the repr() of value already HTML encoded. As a special case, dictionaries are nicely formatted in
table.

This is a utility method for writeAttrs.

saveErrorPage(html)
Save the error page.

Saves the given HTML error page for later viewing by the developer, and returns the filename used.

servletPathname()

The full filesystem path for the servlet.

setting(name)
Settings are inherited from Application.

work()

Main error handling method.

Invoked by __init__ to do the main work. This calls logExceptionToConsole, then checks settings to see
if it should call saveErrorPage (to save the error to disk) and emailException.

It also sends gives a page from privateErrorPage or publicErrorPage (which one based on ShowDebugIn-
foOnErrors).

write(s)
Output s to the body.

100 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

writeAttrs(obj, attrNames)
Output object attributes.

Writes the attributes of the object as given by attrNames. Tries obj._name first, followed by obj.name().
Is resilient regarding exceptions so as not to spoil the exception report.

writeDict(d, heading=None, encoded=None)
Output a table-formatted dictionary.

writeEnvironment()

Output environment.

Writes the environment this is being run in. This is not the environment that was passed in with the request
(holding the CGI information) – it’s just the information from the environment that the Application is being
executed in.

writeFancyTraceback()

Output a fancy traceback, using CGITraceback.

writeHTML()

Write the traceback.

Writes all the parts of the traceback, invoking:

• writeTraceback

• writeMiscInfo

• writeTransaction

• writeEnvironment

• writeIds

• writeFancyTraceback

writeIds()

Output OS identification.

Prints some values from the OS (like processor ID).

writeMiscInfo()

Output misc info.

Write a couple little pieces of information about the environment.

writeTitle(s)
Output the sub-heading to define a section.

writeTraceback()

Output the traceback.

Writes the traceback, with most of the work done by WebUtils.HTMLForException.htmlForException.

writeTransaction()

Output transaction.

Lets the transaction talk about itself, using Transaction.writeExceptionReport.

writeln(s)
Output s plus a newline.

19.1. Core Classes 101



Webware for Python 3, Release 3.0.9

class ExceptionHandler.Singleton

Bases: object

A singleton object.

ExceptionHandler.docType()

Return the document type for the page.

ExceptionHandler.htStyle()

Return the page style.

ExceptionHandler.htTitle(name)
Format a name as a section title.

ExceptionHandler.osIdDict()

Get all OS id information.

Returns a dictionary containing id information such as pid and uid.

19.1.5 HTTPContent

Content producing HTTP servlet.

class HTTPContent.HTTPContent

Bases: HTTPServlet

Content producing HTTP servlet.

HTTPContent is a type of HTTPServlet that is more convenient for Servlets which represent content generated in
response to GET and POST requests. If you are generating HTML content, you you probably want your servlet
to inherit from Page, which contains many HTML-related convenience methods.

If you are generating non-HTML content, it is appropriate to inherit from this class directly.

Subclasses typically override defaultAction().

In awake, the page sets self attributes: _transaction, _response and _request which subclasses should use as
appropriate.

For the purposes of output, the write and writeln convenience methods are provided.

If you plan to produce HTML content, you should start by looking at Page instead of this lower-level class.

__init__()

Subclasses must invoke super.

actions()

The allowed actions.

Returns a list or a set of method names that are allowable actions from HTML forms. The default imple-
mentation returns []. See _respond for more about actions.

application()

The Application instance we’re using.

awake(transaction)
Let servlet awake.

Makes instance variables from the transaction. This is where Page becomes unthreadsafe, as the page is
tied to the transaction. This is also what allows us to implement functions like write, where you don’t need
to pass in the transaction or response.

102 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

callMethodOfServlet(url, method, *args, **kwargs)
Call a method of another servlet.

See Application.callMethodOfServlet for details. The main difference is that here you don’t have to pass in
the transaction as the first argument.

canBeReused()

Returns whether a single servlet instance can be reused.

The default is True, but subclasses con override to return False. Keep in mind that performance may
seriously be degraded if instances can’t be reused. Also, there’s no known good reasons not to reuse an
instance. Remember the awake() and sleep() methods are invoked for every transaction. But just in case,
your servlet can refuse to be reused.

canBeThreaded()

Declares whether servlet can be threaded.

Returns False because of the instance variables we set up in awake.

close()

defaultAction()

Default action.

The core method that gets called as a result of requests. Subclasses should override this.

static endResponse()

End response.

When this method is called during awake or respond, servlet processing will end immediately, and the
accumulated response will be sent.

Note that sleep will still be called, providing a chance to clean up or free any resources.

forward(url)
Forward request.

Forwards this request to another servlet. See Application.forward for details. The main difference is that
here you don’t have to pass in the transaction as the first argument.

handleAction(action)
Handle action.

Invoked by _respond when a legitimate action has been found in a form. Invokes preAction, the actual
action method and postAction.

Subclasses rarely override this method.

includeURL(url)
Include output from other servlet.

Includes the response of another servlet in the current servlet’s response. See Application.includeURL for
details. The main difference is that here you don’t have to pass in the transaction as the first argument.

lastModified(_trans)
Get time of last modification.

Return this object’s Last-Modified time (as a float), or None (meaning don’t know or not applicable).

19.1. Core Classes 103



Webware for Python 3, Release 3.0.9

log(message)
Log a message.

This can be invoked to print messages concerning the servlet. This is often used by self to relay important
information back to developers.

methodNameForAction(name)
Return method name for an action name.

Invoked by _respond() to determine the method name for a given action name which has been derived as
the value of an _action_ field. Since this is usually the label of an HTML submit button in a form, it is
often needed to transform it in order to get a valid method name (for instance, blanks could be replaced by
underscores and the like). This default implementation of the name transformation is the identity, it simply
returns the name. Subclasses should override this method when action names don’t match their method
names; they could “mangle” the action names or look the method names up in a dictionary.

name()

Return the name which is simple the name of the class.

Subclasses should not override this method. It is used for logging and debugging.

static notImplemented(trans)

open()

outputEncoding()

Get the default output encoding of the application.

postAction(actionName)
Things to do after action.

Invoked by self after invoking an action method. Subclasses may override to customize and may or may
not invoke super as they see fit. The actionName is passed to this method, although it seems a generally
bad idea to rely on this. However, it’s still provided just in case you need that hook.

By default, this does nothing.

preAction(actionName)
Things to do before action.

Invoked by self prior to invoking an action method. The actionName is passed to this method, although it
seems a generally bad idea to rely on this. However, it’s still provided just in case you need that hook.

By default, this does nothing.

request()

The request (HTTPRequest) we’re handling.

respond(transaction)
Respond to a request.

Invokes the appropriate respondToSomething() method depending on the type of request (e.g., GET, POST,
PUT, . . . ).

respondToGet(transaction)
Respond to GET.

Invoked in response to a GET request method. All methods are passed to _respond.

104 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

respondToHead(trans)
Respond to a HEAD request.

A correct but inefficient implementation.

respondToPost(transaction)
Respond to POST.

Invoked in response to a POST request method. All methods are passed to _respond.

response()

The response (HTTPResponse) we’re handling.

runMethodForTransaction(transaction, method, *args, **kw)

static runTransaction(transaction)

sendRedirectAndEnd(url, status=None)
Send redirect and end.

Sends a redirect back to the client and ends the response. This is a very popular pattern.

sendRedirectPermanentAndEnd(url)
Send permanent redirect and end.

sendRedirectSeeOtherAndEnd(url)
Send redirect to a URL to be retrieved with GET and end.

This is the proper method for the Post/Redirect/Get pattern.

sendRedirectTemporaryAndEnd(url)
Send temporary redirect and end.

serverSidePath(path=None)
Return the filesystem path of the page on the server.

session()

The session object.

This provides a state for the current user (associated with a browser instance, really). If no session exists,
then a session will be created.

sessionEncode(url=None)
Utility function to access Session.sessionEncode.

Takes a url and adds the session ID as a parameter. This is for cases where you don’t know if the client will
accepts cookies.

setFactory(factory)

sleep(transaction)
Let servlet sleep again.

We unset some variables. Very boring.

transaction()

The Transaction we’re currently handling.

static urlDecode(s)
Turn special % characters into actual characters.

This method does the same as the urllib.unquote_plus() function.

19.1. Core Classes 105



Webware for Python 3, Release 3.0.9

static urlEncode(s)
Quotes special characters using the % substitutions.

This method does the same as the urllib.quote_plus() function.

write(*args)
Write to output.

Writes the arguments, which are turned to strings (with str) and concatenated before being written to the
response. Unicode strings must be encoded before they can be written.

writeExceptionReport(handler)
Write extra information to the exception report.

The handler argument is the exception handler, and information is written there (using writeTitle, write,
and writeln). This information is added to the exception report.

See ExceptionHandler for more information.

writeln(*args)
Write to output with newline.

Writes the arguments (like write), adding a newline after. Unicode strings must be encoded before they can
be written.

exception HTTPContent.HTTPContentError

Bases: Exception

HTTP content error

__init__(*args, **kwargs)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

19.1.6 HTTPExceptions

HTTP exceptions.

HTTPExceptions are for situations that are predicted by the HTTP spec. Where the 200 OK response is typical, a 404
Not Found or 301 Moved Temporarily response is not entirely unexpected.

Application catches all HTTPException exceptions (and subclasses of HTTPException), and instead of being errors
these are translated into responses. In various places these can also be caught and changed, for instance an HTTPAu-
thenticationRequired could be turned into a normal login page.

exception HTTPExceptions.HTTPAuthenticationRequired(realm=None)
Bases: HTTPException

HTTPException “authentication required” subclass.

HTTPAuthenticationRequired will usually cause the browser to open up an HTTP login box, and after getting
login information from the user, the browser will resubmit the request. However, this should also trigger login
pages in properly set up environments (though much code will not work this way).

Browsers will usually not send authentication information unless they receive this response, even when other
pages on the site have given 401 responses before. So when using this authentication every request will usually
be doubled, once without authentication, once with.

106 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

__init__(realm=None)

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

HTTPExceptions.HTTPAuthorizationRequired

alias of HTTPAuthenticationRequired

exception HTTPExceptions.HTTPBadRequest

Bases: HTTPException

HTTPException “bad request” subclass.

When the browser sends an invalid request.

__init__(*args, **kwargs)

19.1. Core Classes 107



Webware for Python 3, Release 3.0.9

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPConflict

Bases: HTTPException

HTTPException “conflict” subclass.

When there’s a locking conflict on this resource (in response to something like a PUT, not for most other conflicts).
Mostly for WebDAV.

__init__(*args, **kwargs)

args

code()

The integer code.

108 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPException

Bases: Exception

HTTPException template class.

Subclasses must define these variables (usually as class variables):

_code:
a tuple of the integer error code, and the short description that goes with it (like (200, "OK"))

_description:
the long-winded description, to be presented in the response page. Or you can override description() if you
want something more context-sensitive.

__init__(*args, **kwargs)

args

19.1. Core Classes 109



Webware for Python 3, Release 3.0.9

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPForbidden

Bases: HTTPException

HTTPException “forbidden” subclass.

When access is not allowed to this resource. If the user is anonymous, and must be authenticated, then HTTPAu-
thenticationRequired is a preferable exception. If the user should not be able to get to this resource (at least
through the path they did), or is authenticated and still doesn’t have access, or no one is allowed to view this, then
HTTPForbidden would be the proper response.

__init__(*args, **kwargs)

args

code()

The integer code.

110 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPInsufficientStorage

Bases: HTTPException

HTTPException “insufficient storage” subclass.

When there is not sufficient storage, usually in response to a PUT when there isn’t enough disk space. Mostly
for WebDAV.

__init__(*args, **kwargs)

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

19.1. Core Classes 111



Webware for Python 3, Release 3.0.9

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPMethodNotAllowed

Bases: HTTPException

HTTPException “method not allowed” subclass.

When a method (like GET, PROPFIND, POST, etc) is not allowed on this resource (usually because it does not
make sense, not because it is not permitted). Mostly for WebDAV.

__init__(*args, **kwargs)

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

112 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPMovedPermanently(location=None, webwareLocation=None)
Bases: HTTPException

HTTPException “moved permanently” subclass.

When a resource is permanently moved. The browser may remember this relocation, and later requests may skip
requesting the original resource altogether.

__init__(location=None, webwareLocation=None)
Set destination.

HTTPMovedPermanently needs a destination that you it should be directed to – you can pass location or
webwareLocation – if you pass webwareLocation it will be relative to the Webware root location (the mount
point of the WSGI application).

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

19.1. Core Classes 113



Webware for Python 3, Release 3.0.9

headers()

We include a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

location()

The location that we will be redirecting to.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPNotFound

Bases: HTTPException

HTTPException “not found” subclass.

When the requested resource does not exist. To be more secretive, it is okay to return a 404 if access to the
resource is not permitted (you are not required to use HTTPForbidden, though it makes it more clear why access
was disallowed).

__init__(*args, **kwargs)

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

114 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPNotImplemented

Bases: HTTPException

HTTPException “not implemented” subclass.

When methods (like GET, POST, PUT, PROPFIND, etc) are not implemented for this resource.

__init__(*args, **kwargs)

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

19.1. Core Classes 115



Webware for Python 3, Release 3.0.9

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPPreconditionFailed

Bases: HTTPException

HTTPException “Precondition Failed” subclass.

During compound, atomic operations, when a precondition for an early operation fail, then later operations in
will fail with this code. Mostly for WebDAV.

__init__(*args, **kwargs)

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

116 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

HTTPExceptions.HTTPRedirect

alias of HTTPTemporaryRedirect

exception HTTPExceptions.HTTPRequestTimeout

Bases: HTTPException

HTTPException “request timeout” subclass.

The client did not produce a request within the time that the server was prepared to wait. The client may repeat
the request without modifications at any later time.

__init__(*args, **kwargs)

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

19.1. Core Classes 117



Webware for Python 3, Release 3.0.9

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPServerError

Bases: HTTPException

HTTPException “Server Error” subclass.

The server encountered an unexpected condition which prevented it from fulfilling the request.

__init__(*args, **kwargs)

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

118 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPServiceUnavailable

Bases: HTTPException

HTTPException “service unavailable” subclass.

The server is currently unable to handle the request due to a temporary overloading or maintenance of the server.
The implication is that this is a temporary condition which will be alleviated after some delay.

__init__(*args, **kwargs)

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

19.1. Core Classes 119



Webware for Python 3, Release 3.0.9

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPSessionExpired

Bases: HTTPException

HTTPException “session expired” subclass.

This is the same as HTTPAuthenticationRequired, but should be used in the situation when a session has expired.

__init__(*args, **kwargs)

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

120 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPTemporaryRedirect(location=None, webwareLocation=None)
Bases: HTTPMovedPermanently

HTTPException “temporary redirect” subclass.

Like HTTPMovedPermanently, except the redirect is only valid for this request. Internally identical to HTTP-
MovedPermanently, except with a different response code. Browsers will check the server for each request to see
where it’s redirected to.

__init__(location=None, webwareLocation=None)
Set destination.

HTTPMovedPermanently needs a destination that you it should be directed to – you can pass location or
webwareLocation – if you pass webwareLocation it will be relative to the Webware root location (the mount
point of the WSGI application).

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

We include a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

19.1. Core Classes 121



Webware for Python 3, Release 3.0.9

location()

The location that we will be redirecting to.

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception HTTPExceptions.HTTPUnsupportedMediaType

Bases: HTTPException

HTTPException “unsupported media type” subclass.

The server is refusing to service the request because the entity of the request is in a format not supported by the
requested resource for the requested method.

__init__(*args, **kwargs)

args

code()

The integer code.

codeMessage()

The message (like Not Found) that goes with the code.

description()

Error description.

Possibly a plain text version of the error description, though usually just identical to htDescription.

headers()

Get headers.

Additional headers that should be sent with the response, not including the Status header. For instance, the
redirect exception adds a Location header.

htBody()

The HTML body of the page.

htDescription()

HTML error description.

The HTML description of the error, for presentation to the browser user.

htTitle()

The title, but it may include HTML markup (like italics).

html()

The error page.

The HTML page that should be sent with the error, usually a description of the problem.

122 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

setTransaction(trans)
Set transaction.

When the exception is caught by Application, it tells the exception what the transaction is. This way you
can resolve relative paths, or otherwise act in a manner sensitive of the context of the error.

title()

The title used in the HTML page.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

19.1.7 HTTPRequest

HTTP requests

class HTTPRequest.HTTPRequest(requestDict=None)
Bases: Request

The base class for HTTP requests.

__init__(requestDict=None)
Initialize the request.

Subclasses are responsible for invoking super and initializing self._time.

accept(which=None)
Return preferences as requested by the user agent.

The accepted preferences are returned as a list of codes in the same order as they appeared in the header.
In other words, the explicit weighting criteria are ignored.

If you do not define otherwise which preferences you are interested in (‘language’, ‘charset’, ‘encoding’),
by default you will get the user preferences for the content types.

clearTransaction()

contextName()

Return the name of the context of this request.

This isn’t necessarily the same as the name of the directory containing the context.

contextPath()

Return the portion of the URI that is the context of the request.

cookie(name, default=<class 'MiscUtils.NoDefault'>)
Return the value of the specified cookie.

cookies()

Return a dict of all cookies the client sent with this request.

delField(name)

environ()

Get the environment for the request.

19.1. Core Classes 123



Webware for Python 3, Release 3.0.9

extraURLPath()

Return additional path components in the URL.

Only works if the Application.config setting “ExtraPathInfo” is set to true; otherwise you will get a page
not found error.

field(name, default=<class 'MiscUtils.NoDefault'>)

fieldStorage()

fields()

hasCookie(name)
Return whether a cookie with the given name exists.

hasField(name)

hasValue(name)
Check whether there is a value with the given name.

hostAndPort()

Return the hostname and port part from the URL of this request.

htmlInfo()

Return a single HTML string that represents info().

Useful for inspecting objects via web browsers.

info()

Return request info.

Return a list of tuples where each tuple has a key/label (a string) and a value (any kind of object).

Values are typically atomic values such as numbers and strings or another list of tuples in the same fashion.
This is for debugging only.

input()

Return a file-style object that the contents can be read from.

isSecure()

Check whether this is a HTTPS connection.

isSessionExpired()

Return whether the request originally had an expired session ID.

Only works if the Application.config setting “IgnoreInvalidSession” is set to true; otherwise you get a
canned error page on an invalid session, so your servlet never gets processed.

localAddress()

Get local address.

Returns a string containing the Internet Protocol (IP) address of the local host (e.g., the server) that received
the request.

static localName()

Get local name.

Returns the fully qualified name of the local host (e.g., the server) that received the request.

124 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

localPort()

Get local port.

Returns the port of the local host (e.g., the server) that received the request.

method()

Return the HTTP request method (in all uppercase).

Typically from the set GET, POST, PUT, DELETE, OPTIONS and TRACE.

originalContextName()

Return the name of the original context before any forwarding.

originalServlet()

Get original servlet before any forwarding.

originalURI()

Get URI of the original servlet before any forwarding.

originalURLPath()

Get URL path of the original servlet before any forwarding.

parent()

Get the servlet that passed this request to us, if any.

parents()

Get the list of all previous servlets.

pathInfo()

Return any extra path information as sent by the client.

This is anything after the servlet name but before the query string. Equivalent to the CGI variable
PATH_INFO.

pathTranslated()

Return extra path information translated as file system path.

This is the same as pathInfo() but translated to the file system. Equivalent to the CGI variable
PATH_TRANSLATED.

pop()

Pop URL path and servlet from the stack, returning the servlet.

previousContextName()

Get the previous context name, if any.

previousContextNames()

Get the list of all previous context names.

previousServlet()

Get the servlet that passed this request to us, if any.

previousServlets()

Get the list of all previous servlets.

previousURI()

Get the previous URI, if any.

previousURIs()

Get the list of all previous URIs.

19.1. Core Classes 125



Webware for Python 3, Release 3.0.9

previousURLPath()

Get the previous URL path, if any.

previousURLPaths()

Get the list of all previous URL paths.

protocol()

Return the name and version of the protocol.

push(servlet, url=None)
Push servlet and URL path on a stack, setting a new URL.

queryString()

Return the query string portion of the URL for this request.

Equivalent to the CGI variable QUERY_STRING.

rawInput(rewind=False)
Get the raw input from the request.

This gives you a file-like object for the data that was sent with the request (e.g., the body of a POST request,
or the document uploaded in a PUT request).

The file might not be rewound to the beginning if there was valid, form-encoded POST data. Pass
rewind=True if you want to be sure you get the entire body of the request.

remoteAddress()

Return a string containing the IP address of the client.

remoteName()

Return the fully qualified name of the client that sent the request.

Returns the IP address of the client if the name cannot be determined.

remoteUser()

Always returns None since authentication is not yet supported.

Take from CGI variable REMOTE_USER.

requestID()

Return the request ID.

The request ID is a serial number unique to this request (at least unique for one run of the Application).

responseClass()

Get the corresponding response class.

scheme()

Return the URI scheme of the request (http or https).

scriptFileName()

Return the filesystem path of the WSGI script.

Equivalent to the CGI variable SCRIPT_FILENAME.

scriptName()

Return the name of the WSGI script as it appears in the URL.

Example: ‘/Webware’ Does not reflect redirection by the web server. Equivalent to the CGI variable
SCRIPT_NAME.

126 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

serverDictionary()

Return a dictionary with the data the web server gave us.

This data includes HTTP_HOST and HTTP_USER_AGENT, for example.

serverPath()

Return the web server URL path of this request.

This is the URL that was actually received by the web server before any rewriting took place.

Same as serverURL, but without scheme and host.

serverPathDir()

Return the directory of the web server URL path.

Same as serverPath, but removes the actual page.

serverSideContextPath(path=None)
Return the absolute server-side path of the context of this request.

If the optional path is passed in, then it is joined with the server side context directory to form a path relative
to the object.

This directory could be different from the result of serverSidePath() if the request is in a subdirectory of
the main context directory.

serverSidePath(path=None)
Return the absolute server-side path of the request.

If the optional path is passed in, then it is joined with the server side directory to form a path relative to the
object.

serverURL(canonical=False)
Return the full Internet path to this request.

This is the URL that was actually received by the web server before any rewriting took place. If canonical
is set to true, then the canonical hostname of the server is used if possible.

The path is returned without any extra path info or query strings, i.e. https://www.my.own.host.com:8080/
Webware/TestPage.py

serverURLDir()

Return the directory of the URL in full Internet form.

Same as serverURL, but removes the actual page.

servlet()

Get current servlet for this request.

servletPath()

Return the base URL for the servlets, sans host.

This is useful in cases when you are constructing URLs. See Testing/Main.py for an example use.

Roughly equivalent to the CGI variable SCRIPT_NAME, but reflects redirection by the web server.

servletPathFromSiteRoot()

Return the “servlet path” of this servlet relative to the siteRoot.

In other words, everything after the name of the context (if present). If you append this to the result of
self.siteRoot() you get back to the current servlet. This is useful for saving the path to the current servlet in
a database, for example.

19.1. Core Classes 127

https://www.my.own.host.com:8080/Webware/TestPage.py
https://www.my.own.host.com:8080/Webware/TestPage.py


Webware for Python 3, Release 3.0.9

servletURI()

Return servlet URI without any query strings or extra path info.

session()

Return the session associated with this request.

The session is either as specified by sessionId() or newly created. This is a convenience for transac-
tion.session()

sessionId()

Return a string with the session ID specified by the client.

Returns None if there is no session ID.

setField(name, value)

setSessionExpired(sessionExpired)

setSessionId(sessionID, force=False)
Set the session ID.

This needs to be called _before_ attempting to use the session. This would be useful if the session ID is
being passed in through unusual means, for example via a field in an XML-RPC request.

Pass in force=True if you want to force this session ID to be used even if the session doesn’t exist. This
would be useful in unusual circumstances where the client is responsible for creating the unique session ID
rather than the server. Be sure to use only legal filename characters in the session ID – 0-9, a-z, A-Z, _, -,
and . are OK but everything else will be rejected, as will identifiers longer than 80 characters. (Without
passing in force=True, a random session ID will be generated if that session ID isn’t already present in the
session store.)

setTransaction(trans)
Set a transaction container.

setURLPath(path)
Set the URL path of the request.

There is rarely a need to do this. Proceed with caution.

siteRoot()

Return the relative URL path of the home location.

This includes all URL path components necessary to get back home from the current location.

Examples:
‘’ ‘../’ ‘../../’

You can use this as a prefix to a URL that you know is based off the home location. Any time you are in
a servlet that may have been forwarded to from another servlet at a different level, you should prefix your
URL’s with this. That is, if servlet “Foo/Bar” forwards to “Qux”, then the qux servlet should use siteRoot()
to construct all links to avoid broken links. This works properly because this method computes the path
based on the _original_ servlet, not the location of the servlet that you have forwarded to.

siteRootFromCurrentServlet()

Return relative URL path to home seen from the current servlet.

This includes all URL path components necessary to get back home from the current servlet (not from the
original request).

Similar to siteRoot() but instead, it returns the site root relative to the _current_ servlet, not the _original_
servlet.

128 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

time()

Return the time that the request was received.

timeStamp()

Return time() as human readable string for logging and debugging.

transaction()

Get the transaction container.

uri()

Return the URI for this request (everything after the host name).

This is the URL that was actually received by the web server before any rewriting took place, including the
query string. Equivalent to the CGI variable REQUEST_URI.

uriWebwareRoot()

Return relative URL path of the Webware root location.

urlPath()

Get the URL path relative to the mount point, without query string.

This is actually the same as pathInfo().

For example, https://host/Webware/Context/Servlet?x=1 yields ‘/Context/Servlet’.

urlPathDir()

Same as urlPath, but only gives the directory.

For example, https://host/Webware/Context/Servlet?x=1 yields ‘/Context’.

value(name, default=<class 'MiscUtils.NoDefault'>)
Return the value with the given name.

Values are fields or cookies. Use this method when you’re field/cookie agnostic.

writeExceptionReport(handler)

HTTPRequest.htmlInfo(info)
Return a single HTML string that represents the info structure.

Useful for inspecting objects via web browsers.

19.1.8 HTTPResponse

HTTP responses

class HTTPResponse.HTTPResponse(transaction, strmOut, headers=None)
Bases: Response

The base class for HTTP responses.

__init__(transaction, strmOut, headers=None)
Initialize the request.

addCookie(cookie)
Add a cookie that will be sent with this response.

cookie is a Cookie object instance. See the Cookie class docs.

19.1. Core Classes 129

https://host/Webware/Context/Servlet?x=1
https://host/Webware/Context/Servlet?x=1


Webware for Python 3, Release 3.0.9

assertNotCommitted()

Assert the the response is not already committed.

This raises a ConnectionError if the connection is already committed.

clearCookies()

Clear all the cookies.

clearHeaders()

Clear all the headers.

You might consider a setHeader(‘Content-Type’, ‘text/html’) or something similar after this.

clearTransaction()

commit()

Commit response.

Write out all headers to the response stream, and tell the underlying response stream it can start sending
data.

cookie(name)
Return the value of the specified cookie.

cookies()

Get all the cookies.

Returns a dictionary-style object of all Cookie objects that will be sent with this response.

delCookie(name, path='/', secure=False)
Delete a cookie at the browser.

To do so, one has to create and send to the browser a cookie with parameters that will cause the browser to
delete it.

delHeader(name)
Delete a specific header by name.

deliver()

Deliver response.

The final step in the processing cycle. Not used for much with responseStreams added.

displayError(err)
Display HTTPException errors, with status codes.

endTime()

flush(autoFlush=True)
Send all accumulated response data now.

Commits the response headers and tells the underlying stream to flush. if autoFlush is true, the responseS-
tream will flush itself automatically from now on.

Caveat: Some web servers, especially IIS, will still buffer the output from your servlet until it terminates be-
fore transmitting the results to the browser. Also, server modules for Apache like mod_deflate or mod_gzip
may do buffering of their own that will cause flush() to not result in data being sent immediately to the
client. You can prevent this by setting a no-gzip note in the Apache configuration, e.g.

SetEnvIf Request_URI ^/Webware/MyServlet no-gzip=1

130 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

Even the browser may buffer its input before displaying it. For example, Netscape buffered text until it
received an end-of-line or the beginning of a tag, and it didn’t render tables until the end tag of the outermost
table was seen. Some Firefox add-ons also buffer response data before it gets rendered. Some versions of
MSIE will only start to display the page after they have received 256 bytes of output, so you may need to
send extra whitespace before flushing to get MSIE to display the page.

hasCookie(name)
Return True if the specified cookie is present.

hasHeader(name)

header(name, default=<class 'MiscUtils.NoDefault'>)
Return the value of the specified header.

headers()

Return all the headers.

Returns a dictionary-style object of all header objects contained by this request.

isCommitted()

Check whether response is already committed.

Checks whether the response has already been partially or completely sent. If this method returns True,
then no new headers/cookies can be added to the response anymore.

mergeTextHeaders(headerStr)
Merge text into our headers.

Given a string of headers (separated by newlines), merge them into our headers.

protocol()

Return the name and version of the protocol.

rawResponse()

Return the final contents of the response.

Don’t invoke this method until after deliver().

Returns a dictionary representing the response containing only strings, numbers, lists, tuples, etc. with
no backreferences. That means you don’t need any special imports to examine the contents and you can
marshal it. Currently there are two keys. ‘headers’ is list of tuples each of which contains two strings:
the header and it’s value. ‘contents’ is a string (that may be binary, for example, if an image were being
returned).

recordEndTime()

Record the end time of the response.

Stores the current time as the end time of the response. This should be invoked at the end of deliver(). It
may also be invoked by the application for those responses that never deliver due to an error.

recordSession()

Record session ID.

Invoked by commit() to record the session ID in the response (if a session exists). This implementation
sets a cookie for that purpose. For people who don’t like sweets, a future version could check a setting and
instead of using cookies, could parse the HTML and update all the relevant URLs to include the session
ID (which implies a big performance hit). Or we could require site developers to always pass their URLs
through a function which adds the session ID (which implies pain). Personally, I’d rather just use cookies.
You can experiment with different techniques by subclassing Session and overriding this method. Just make
sure Application knows which “session” class to use.

19.1. Core Classes 131



Webware for Python 3, Release 3.0.9

It should be also considered to automatically add the server port to the cookie name in order to distinguish
application instances running on different ports on the same server, or to use the port cookie-attribute
introduced with RFC 2965 for that purpose.

reset()

Reset the response (such as headers, cookies and contents).

sendError(code, msg='')
Set the status code to the specified code and message.

sendRedirect(url, status=None)
Redirect to another url.

This method sets the headers and content for the redirect, but does not change the cookies and other headers.
Use clearCookies() or clearHeaders() as appropriate.

See https://www.ietf.org/rfc/rfc2616 (section 10.3.3) and https://www.ietf.org/rfc/rfc3875 (section 6.2.3).

sendRedirectPermanent(url)
Redirect permanently to another URL.

sendRedirectSeeOther(url)
Redirect to a URL that shall be retrieved with GET.

This method exists primarily to allow for the PRG pattern.

See https://en.wikipedia.org/wiki/Post/Redirect/Get

sendRedirectTemporary(url)
Redirect temporarily to another URL.

setCookie(name, value, path='/', expires='ONCLOSE', secure=False)
Set a cookie.

You can also set the path (which defaults to /).

You can also set when it expires. It can expire:

• ‘NOW’: this is the same as trying to delete it, but it doesn’t really seem to work in IE

• ‘ONCLOSE’: the default behavior for cookies (expires when the browser closes)

• ‘NEVER’: some time in the far, far future.

• integer: a timestamp value

• tuple or struct_time: a tuple, as created by the time module

• datetime: a datetime.datetime object for the time (if without time zone, assumed to be local, not GMT
time)

• timedelta: a duration counted from the present, e.g., datetime.timedelta(days=14) (2 weeks in the
future)

• ‘+. . . ’: a time in the future, ‘. . . ’ should be something like 1w (1 week), 3h46m (3:45), etc. You
can use y (year), b (month), w (week), d (day), h (hour), m (minute), s (second). This is done by the
MiscUtils.DateInterval.

setErrorHeaders(err)
Set error headers for an HTTPException.

132 Chapter 19. API Reference

https://www.ietf.org/rfc/rfc2616
https://www.ietf.org/rfc/rfc3875
https://en.wikipedia.org/wiki/Post/Redirect/Get


Webware for Python 3, Release 3.0.9

setHeader(name, value)
Set a specific header by name.

Parameters:
name: the header name value: the header value

setStatus(code, msg='')
Set the status code of the response, such as 200, ‘OK’.

size()

Return the size of the final contents of the response.

Don’t invoke this method until after deliver().

streamOut()

write(output=None)
Write output to the response stream.

The output will be converted to a string, and then converted to bytes using the application output encoding,
unless it is already bytes.

writeExceptionReport(handler)

writeHeaders()

Write headers to the response stream. Used internally.

19.1.9 HTTPServlet

HTTP servlets

class HTTPServlet.HTTPServlet

Bases: Servlet

A HTTP servlet.

HTTPServlet implements the respond() method to invoke methods such as respondToGet() and respondToPut()
depending on the type of HTTP request. Example HTTP request methods are GET, POST, HEAD, etc. Sub-
classes implement HTTP method FOO in the Python method respondToFoo. Unsupported methods return a “501
Not Implemented” status.

Note that HTTPServlet inherits awake() and respond() methods from Servlet and that subclasses may make use
of these.

See also: Servlet

__init__()

Subclasses must invoke super.

awake(transaction)
Send the awake message.

This message is sent to all objects that participate in the request-response cycle in a top-down fashion, prior
to respond(). Subclasses must invoke super.

canBeReused()

Returns whether a single servlet instance can be reused.

The default is True, but subclasses con override to return False. Keep in mind that performance may
seriously be degraded if instances can’t be reused. Also, there’s no known good reasons not to reuse an

19.1. Core Classes 133



Webware for Python 3, Release 3.0.9

instance. Remember the awake() and sleep() methods are invoked for every transaction. But just in case,
your servlet can refuse to be reused.

canBeThreaded()

Return whether the servlet can be multithreaded.

This value should not change during the lifetime of the object. The default implementation returns False.
Note: This is not currently used.

close()

lastModified(_trans)
Get time of last modification.

Return this object’s Last-Modified time (as a float), or None (meaning don’t know or not applicable).

log(message)
Log a message.

This can be invoked to print messages concerning the servlet. This is often used by self to relay important
information back to developers.

name()

Return the name which is simple the name of the class.

Subclasses should not override this method. It is used for logging and debugging.

static notImplemented(trans)

open()

respond(transaction)
Respond to a request.

Invokes the appropriate respondToSomething() method depending on the type of request (e.g., GET, POST,
PUT, . . . ).

respondToHead(trans)
Respond to a HEAD request.

A correct but inefficient implementation.

runMethodForTransaction(transaction, method, *args, **kw)

static runTransaction(transaction)

serverSidePath(path=None)
Return the filesystem path of the page on the server.

setFactory(factory)

sleep(transaction)
Send the sleep message.

134 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

19.1.10 ImportManager

ImportManager

Manages imported modules and protects against concurrent imports.

Keeps lists of all imported Python modules and templates as well as other config files used by Webware for Python.
Modules which are not directly imported can be monitored using hupper. This can be used to detect changes in source
files, templates or config files in order to reload them automatically.

class ImportManager.ImportManager(*args, **kwargs)
Bases: object

The import manager.

Keeps track of the Python modules and other system files that have been imported and are used by Webware.

__init__()

Initialize import manager.

delModules(includePythonModules=False, excludePrefixes=None)
Delete imported modules.

Deletes all the modules that have been imported unless they are part of Webware. This can be used to
support auto reloading.

fileList(update=True)
Return the list of tracked files.

fileUpdated(filename, update=True, getmtime=<function getmtime>)
Check whether file has been updated.

findSpec(name, path, fullModuleName=None)
Find the module spec for the given name at the given path.

getReloader()

Get the current reloader if the application is monitored.

moduleFromSpec(spec)
Load the module with the given module spec.

notifyOfNewFiles(hook)
Register notification hook.

Called by someone else to register that they’d like to know when a new file is imported.

recordFile(filename, isfile=<function isfile>)
Record a file.

recordModule(module, isfile=<function isfile>)
Record a module.

recordModules(moduleNames=None)
Record a list of modules (or all modules).

updatedFile(update=True, getmtime=<function getmtime>)
Check whether one of the files has been updated.

watchFile(path, moduleName=None, getmtime=<function getmtime>)
Add more files to watch without importing them.

19.1. Core Classes 135



Webware for Python 3, Release 3.0.9

19.1.11 JSONRPCServlet

JSON-RPC servlet base class

Written by Jean-Francois Pieronne

class JSONRPCServlet.JSONRPCServlet

Bases: HTTPContent

A superclass for Webware servlets using JSON-RPC techniques.

JSONRPCServlet can be used to make coding JSON-RPC applications easier.

Subclasses should override the method json_methods() which returns a list of method names. These method
names refer to Webware Servlet methods that are able to be called by an JSON-RPC-enabled web page. This is
very similar in functionality to Webware’s actions.

Some basic security measures against JavaScript hijacking are taken by default which can be deactivated if you’re
not dealing with sensitive data. You can further increase security by adding shared secret mechanisms.

__init__()

Subclasses must invoke super.

actions()

The allowed actions.

Returns a list or a set of method names that are allowable actions from HTML forms. The default imple-
mentation returns []. See _respond for more about actions.

application()

The Application instance we’re using.

awake(transaction)
Let servlet awake.

Makes instance variables from the transaction. This is where Page becomes unthreadsafe, as the page is
tied to the transaction. This is also what allows us to implement functions like write, where you don’t need
to pass in the transaction or response.

callMethodOfServlet(url, method, *args, **kwargs)
Call a method of another servlet.

See Application.callMethodOfServlet for details. The main difference is that here you don’t have to pass in
the transaction as the first argument.

canBeReused()

Returns whether a single servlet instance can be reused.

The default is True, but subclasses con override to return False. Keep in mind that performance may
seriously be degraded if instances can’t be reused. Also, there’s no known good reasons not to reuse an
instance. Remember the awake() and sleep() methods are invoked for every transaction. But just in case,
your servlet can refuse to be reused.

canBeThreaded()

Declares whether servlet can be threaded.

Returns False because of the instance variables we set up in awake.

close()

136 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

defaultAction()

Default action.

The core method that gets called as a result of requests. Subclasses should override this.

static endResponse()

End response.

When this method is called during awake or respond, servlet processing will end immediately, and the
accumulated response will be sent.

Note that sleep will still be called, providing a chance to clean up or free any resources.

exposedMethods()

Return a list or a set of all exposed RPC methods.

forward(url)
Forward request.

Forwards this request to another servlet. See Application.forward for details. The main difference is that
here you don’t have to pass in the transaction as the first argument.

handleAction(action)
Handle action.

Invoked by _respond when a legitimate action has been found in a form. Invokes preAction, the actual
action method and postAction.

Subclasses rarely override this method.

includeURL(url)
Include output from other servlet.

Includes the response of another servlet in the current servlet’s response. See Application.includeURL for
details. The main difference is that here you don’t have to pass in the transaction as the first argument.

jsonCall()

Execute method with arguments on the server side.

Returns JavaScript function to be executed by the client immediately.

lastModified(_trans)
Get time of last modification.

Return this object’s Last-Modified time (as a float), or None (meaning don’t know or not applicable).

log(message)
Log a message.

This can be invoked to print messages concerning the servlet. This is often used by self to relay important
information back to developers.

methodNameForAction(name)
Return method name for an action name.

Invoked by _respond() to determine the method name for a given action name which has been derived as
the value of an _action_ field. Since this is usually the label of an HTML submit button in a form, it is
often needed to transform it in order to get a valid method name (for instance, blanks could be replaced by
underscores and the like). This default implementation of the name transformation is the identity, it simply
returns the name. Subclasses should override this method when action names don’t match their method
names; they could “mangle” the action names or look the method names up in a dictionary.

19.1. Core Classes 137



Webware for Python 3, Release 3.0.9

name()

Return the name which is simple the name of the class.

Subclasses should not override this method. It is used for logging and debugging.

static notImplemented(trans)

open()

outputEncoding()

Get the default output encoding of the application.

postAction(actionName)
Things to do after action.

Invoked by self after invoking an action method. Subclasses may override to customize and may or may
not invoke super as they see fit. The actionName is passed to this method, although it seems a generally
bad idea to rely on this. However, it’s still provided just in case you need that hook.

By default, this does nothing.

preAction(actionName)
Things to do before action.

Invoked by self prior to invoking an action method. The actionName is passed to this method, although it
seems a generally bad idea to rely on this. However, it’s still provided just in case you need that hook.

By default, this does nothing.

request()

The request (HTTPRequest) we’re handling.

respond(transaction)
Respond to a request.

Invokes the appropriate respondToSomething() method depending on the type of request (e.g., GET, POST,
PUT, . . . ).

respondToGet(transaction)
Respond to GET.

Invoked in response to a GET request method. All methods are passed to _respond.

respondToHead(trans)
Respond to a HEAD request.

A correct but inefficient implementation.

respondToPost(transaction)
Respond to POST.

Invoked in response to a POST request method. All methods are passed to _respond.

response()

The response (HTTPResponse) we’re handling.

runMethodForTransaction(transaction, method, *args, **kw)

static runTransaction(transaction)

138 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

sendRedirectAndEnd(url, status=None)
Send redirect and end.

Sends a redirect back to the client and ends the response. This is a very popular pattern.

sendRedirectPermanentAndEnd(url)
Send permanent redirect and end.

sendRedirectSeeOtherAndEnd(url)
Send redirect to a URL to be retrieved with GET and end.

This is the proper method for the Post/Redirect/Get pattern.

sendRedirectTemporaryAndEnd(url)
Send temporary redirect and end.

serverSidePath(path=None)
Return the filesystem path of the page on the server.

session()

The session object.

This provides a state for the current user (associated with a browser instance, really). If no session exists,
then a session will be created.

sessionEncode(url=None)
Utility function to access Session.sessionEncode.

Takes a url and adds the session ID as a parameter. This is for cases where you don’t know if the client will
accepts cookies.

setFactory(factory)

sleep(transaction)
Let servlet sleep again.

We unset some variables. Very boring.

transaction()

The Transaction we’re currently handling.

static urlDecode(s)
Turn special % characters into actual characters.

This method does the same as the urllib.unquote_plus() function.

static urlEncode(s)
Quotes special characters using the % substitutions.

This method does the same as the urllib.quote_plus() function.

write(*args)
Write to output.

Writes the arguments, which are turned to strings (with str) and concatenated before being written to the
response. Unicode strings must be encoded before they can be written.

writeError(msg)

19.1. Core Classes 139



Webware for Python 3, Release 3.0.9

writeExceptionReport(handler)
Write extra information to the exception report.

The handler argument is the exception handler, and information is written there (using writeTitle, write,
and writeln). This information is added to the exception report.

See ExceptionHandler for more information.

writeResult(data)

writeln(*args)
Write to output with newline.

Writes the arguments (like write), adding a newline after. Unicode strings must be encoded before they can
be written.

19.1.12 Page

The standard web page template.

class Page.Page

Bases: HTTPContent

The standard web page template.

Page is a type of HTTPContent that is more convenient for servlets which represent HTML pages generated in
response to GET and POST requests. In fact, this is the most common type of Servlet.

Subclasses typically override writeHeader, writeBody and writeFooter.

They might also choose to override writeHTML entirely.

When developing a full-blown website, it’s common to create a subclass of Page called SitePage which defines
the common look and feel of the website and provides site-specific convenience methods. Then all other pages
in your application then inherit from SitePage.

__init__()

Subclasses must invoke super.

actions()

The allowed actions.

Returns a list or a set of method names that are allowable actions from HTML forms. The default imple-
mentation returns []. See _respond for more about actions.

application()

The Application instance we’re using.

awake(transaction)
Let servlet awake.

Makes instance variables from the transaction. This is where Page becomes unthreadsafe, as the page is
tied to the transaction. This is also what allows us to implement functions like write, where you don’t need
to pass in the transaction or response.

callMethodOfServlet(url, method, *args, **kwargs)
Call a method of another servlet.

See Application.callMethodOfServlet for details. The main difference is that here you don’t have to pass in
the transaction as the first argument.

140 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

canBeReused()

Returns whether a single servlet instance can be reused.

The default is True, but subclasses con override to return False. Keep in mind that performance may
seriously be degraded if instances can’t be reused. Also, there’s no known good reasons not to reuse an
instance. Remember the awake() and sleep() methods are invoked for every transaction. But just in case,
your servlet can refuse to be reused.

canBeThreaded()

Declares whether servlet can be threaded.

Returns False because of the instance variables we set up in awake.

close()

defaultAction()

The default action in a Page is to writeHTML().

static endResponse()

End response.

When this method is called during awake or respond, servlet processing will end immediately, and the
accumulated response will be sent.

Note that sleep will still be called, providing a chance to clean up or free any resources.

forward(url)
Forward request.

Forwards this request to another servlet. See Application.forward for details. The main difference is that
here you don’t have to pass in the transaction as the first argument.

handleAction(action)
Handle action.

Invoked by _respond when a legitimate action has been found in a form. Invokes preAction, the actual
action method and postAction.

Subclasses rarely override this method.

htBodyArgs()

The attributes for the <body> element.

Returns the arguments used for the HTML <body> tag. Invoked by writeBody().

With the prevalence of stylesheets (CSS), you can probably skip this particular HTML feature, but for
historical reasons this sets the page to black text on white.

htRootArgs()

The attributes for the <html> element.

Returns the arguments used for the root HTML tag. Invoked by writeHTML() and preAction().

Authors are encouraged to specify a lang attribute, giving the document’s language.

htTitle()

The page title as HTML.

Return self.title(). Subclasses sometimes override this to provide an HTML enhanced version of the title.
This is the method that should be used when including the page title in the actual page contents.

19.1. Core Classes 141



Webware for Python 3, Release 3.0.9

static htmlDecode(s)
HTML decode special characters.

Alias for WebUtils.Funcs.htmlDecode. Decodes HTML entities.

static htmlEncode(s)
HTML encode special characters. Alias for WebUtils.Funcs.htmlEncode, quotes the special characters
&, <, >, and “

includeURL(url)
Include output from other servlet.

Includes the response of another servlet in the current servlet’s response. See Application.includeURL for
details. The main difference is that here you don’t have to pass in the transaction as the first argument.

lastModified(_trans)
Get time of last modification.

Return this object’s Last-Modified time (as a float), or None (meaning don’t know or not applicable).

log(message)
Log a message.

This can be invoked to print messages concerning the servlet. This is often used by self to relay important
information back to developers.

methodNameForAction(name)
Return method name for an action name.

Invoked by _respond() to determine the method name for a given action name which has been derived as
the value of an _action_ field. Since this is usually the label of an HTML submit button in a form, it is
often needed to transform it in order to get a valid method name (for instance, blanks could be replaced by
underscores and the like). This default implementation of the name transformation is the identity, it simply
returns the name. Subclasses should override this method when action names don’t match their method
names; they could “mangle” the action names or look the method names up in a dictionary.

name()

Return the name which is simple the name of the class.

Subclasses should not override this method. It is used for logging and debugging.

static notImplemented(trans)

open()

outputEncoding()

Get the default output encoding of the application.

postAction(actionName)
Things to do after actions.

Simply close the html tag (</html>).

preAction(actionName)
Things to do before actions.

For a page, we first writeDocType(), <html>, and then writeHead().

request()

The request (HTTPRequest) we’re handling.

142 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

respond(transaction)
Respond to a request.

Invokes the appropriate respondToSomething() method depending on the type of request (e.g., GET, POST,
PUT, . . . ).

respondToGet(transaction)
Respond to GET.

Invoked in response to a GET request method. All methods are passed to _respond.

respondToHead(trans)
Respond to a HEAD request.

A correct but inefficient implementation.

respondToPost(transaction)
Respond to POST.

Invoked in response to a POST request method. All methods are passed to _respond.

response()

The response (HTTPResponse) we’re handling.

runMethodForTransaction(transaction, method, *args, **kw)

static runTransaction(transaction)

sendRedirectAndEnd(url, status=None)
Send redirect and end.

Sends a redirect back to the client and ends the response. This is a very popular pattern.

sendRedirectPermanentAndEnd(url)
Send permanent redirect and end.

sendRedirectSeeOtherAndEnd(url)
Send redirect to a URL to be retrieved with GET and end.

This is the proper method for the Post/Redirect/Get pattern.

sendRedirectTemporaryAndEnd(url)
Send temporary redirect and end.

serverSidePath(path=None)
Return the filesystem path of the page on the server.

session()

The session object.

This provides a state for the current user (associated with a browser instance, really). If no session exists,
then a session will be created.

sessionEncode(url=None)
Utility function to access Session.sessionEncode.

Takes a url and adds the session ID as a parameter. This is for cases where you don’t know if the client will
accepts cookies.

setFactory(factory)

19.1. Core Classes 143



Webware for Python 3, Release 3.0.9

sleep(transaction)
Let servlet sleep again.

We unset some variables. Very boring.

title()

The page title.

Subclasses often override this method to provide a custom title. This title should be absent of HTML tags.
This implementation returns the name of the class, which is sometimes appropriate and at least informative.

transaction()

The Transaction we’re currently handling.

static urlDecode(s)
Turn special % characters into actual characters.

This method does the same as the urllib.unquote_plus() function.

static urlEncode(s)
Quotes special characters using the % substitutions.

This method does the same as the urllib.quote_plus() function.

write(*args)
Write to output.

Writes the arguments, which are turned to strings (with str) and concatenated before being written to the
response. Unicode strings must be encoded before they can be written.

writeBody()

Write the <body> element of the page.

Writes the <body> portion of the page by writing the <body>...</body> (making use of htBodyArgs)
and invoking writeBodyParts in between.

writeBodyParts()

Write the parts included in the <body> element.

Invokes writeContent. Subclasses should only override this method to provide additional page parts such
as a header, sidebar and footer, that a subclass doesn’t normally have to worry about writing.

For writing page-specific content, subclasses should override writeContent instead. This method is in-
tended to be overridden by your SitePage.

See SidebarPage for an example override of this method.

Invoked by writeBody.

writeContent()

Write the unique, central content for the page.

Subclasses should override this method (not invoking super) to write their unique page content.

Invoked by writeBodyParts.

writeDocType()

Write the DOCTYPE tag.

Invoked by writeHTML to write the <!DOCTYPE ...> tag.

By default this gives the HTML 5 DOCTYPE.

Subclasses may override to specify something else.

144 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

writeExceptionReport(handler)
Write extra information to the exception report.

The handler argument is the exception handler, and information is written there (using writeTitle, write,
and writeln). This information is added to the exception report.

See ExceptionHandler for more information.

writeHTML()

Write all the HTML for the page.

Subclasses may override this method (which is invoked by _respond) or more commonly its constituent
methods, writeDocType, writeHead and writeBody.

You will want to override this method if:

• you want to format the entire HTML page yourself

• if you want to send an HTML page that has already been generated

• if you want to use a template that generates the entire page

• if you want to send non-HTML content; in this case, be sure to call
self.response().setHeader(‘Content-Type’, ‘mime/type’).

writeHead()

Write the <head> element of the page.

Writes the <head> portion of the page by writing the <head>...</head> tags and invoking
writeHeadParts in between.

writeHeadParts()

Write the parts included in the <head> element.

Writes the parts inside the <head>...</head> tags. Invokes writeTitle and then writeMetaData,
writeStyleSheet and writeJavaScript. Subclasses should override the title method and the three
latter methods only.

writeJavaScript()

Write the JavaScript for the page.

This default implementation does nothing. Subclasses should override if necessary.

A typical implementation is:

self.writeln('<script src="ajax.js"></script>')

writeMetaData()

Write the meta data for the page.

This default implementation only specifies the output encoding. Subclasses should override if necessary.

writeStyleSheet()

Write the CSS for the page.

This default implementation does nothing. Subclasses should override if necessary.

A typical implementation is:

self.writeln('<link rel="stylesheet" href="StyleSheet.css">')

19.1. Core Classes 145



Webware for Python 3, Release 3.0.9

writeTitle()

Write the <title> element of the page.

Writes the <title> portion of the page. Uses title, which is where you should override.

writeln(*args)
Write to output with newline.

Writes the arguments (like write), adding a newline after. Unicode strings must be encoded before they can
be written.

19.1.13 PickleRPCServlet

Dict-RPC servlets.

class PickleRPCServlet.PickleRPCServlet

Bases: RPCServlet, SafeUnpickler

PickleRPCServlet is a base class for Dict-RPC servlets.

The “Pickle” refers to Python’s pickle module. This class is similar to XMLRPCServlet. By using Python pickles
you get their convenience (assuming the client is Pythonic), but lose language independence. Some of us don’t
mind that last one. ;-)

Conveniences over XML-RPC include the use of all of the following:

• Any pickle-able Python type (datetime for example)

• Python instances (aka objects)

• None

• Longs that are outside the 32-bit int boundaries

• Keyword arguments

Pickles should also be faster than XML, especially now that we support binary pickling and compression.

To make your own PickleRPCServlet, create a subclass and implement a method which is then named in ex-
posedMethods():

from PickleRPCServlet import PickleRPCServlet
class Math(PickleRPCServlet):

def multiply(self, x, y):
return x * y

def exposedMethods(self):
return ['multiply']

To make a PickleRPC call from another Python program, do this:

from MiscUtils.PickleRPC import Server
server = Server('http://localhost/Webware/Context/Math')
print(server.multiply(3, 4)) # 12
print(server.multiply('-', 10)) # ----------

If a request error is raised by the server, then MiscUtils.PickleRPC.RequestError is raised. If an unhandled
exception is raised by the server, or the server response is malformed, then MiscUtils.PickleRPC.ResponseError
(or one of its subclasses) is raised.

146 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

Tip: If you want callers of the RPC servlets to be able to introspect what methods are available, then include
‘exposedMethods’ in exposedMethods().

If you wanted the actual response dictionary for some reason:

print(server._request('multiply', 3, 4))
# {'value': 12, 'timeReceived': ...}

In which case, an exception is not purposefully raised if the dictionary contains one. Instead, examine the dic-
tionary.

For the dictionary formats and more information see the docs for MiscUtils.PickleRPC.

__init__()

Subclasses must invoke super.

allowedGlobals()

Allowed class names.

Must return a list of (moduleName, klassName) tuples for all classes that you want to allow to be unpickled.

Example:

return [('datetime', 'date')]

Allows datetime.date instances to be unpickled.

awake(transaction)
Begin transaction.

call(methodName, *args, **keywords)
Call custom method.

Subclasses may override this class for custom handling of methods.

canBeReused()

Returns whether a single servlet instance can be reused.

The default is True, but subclasses con override to return False. Keep in mind that performance may
seriously be degraded if instances can’t be reused. Also, there’s no known good reasons not to reuse an
instance. Remember the awake() and sleep() methods are invoked for every transaction. But just in case,
your servlet can refuse to be reused.

canBeThreaded()

Return whether the servlet can be multithreaded.

This value should not change during the lifetime of the object. The default implementation returns False.
Note: This is not currently used.

close()

exposedMethods()

Get exposed methods.

Subclasses should return a list of methods that will be exposed through XML-RPC.

findGlobal(module, klass)
Find class name.

19.1. Core Classes 147



Webware for Python 3, Release 3.0.9

static handleException(transaction)
Handle exception.

If ReportRPCExceptionsInWebware is set to True, then flush the response (because we don’t want the
standard HTML traceback to be appended to the response) and then handle the exception in the standard
Webware way. This means logging it to the console, storing it in the error log, sending error email, etc.
depending on the settings.

lastModified(_trans)
Get time of last modification.

Return this object’s Last-Modified time (as a float), or None (meaning don’t know or not applicable).

load(file)
Unpickle a file.

loads(s)
Unpickle a string.

log(message)
Log a message.

This can be invoked to print messages concerning the servlet. This is often used by self to relay important
information back to developers.

name()

Return the name which is simple the name of the class.

Subclasses should not override this method. It is used for logging and debugging.

static notImplemented(trans)

open()

respond(transaction)
Respond to a request.

Invokes the appropriate respondToSomething() method depending on the type of request (e.g., GET, POST,
PUT, . . . ).

respondToHead(trans)
Respond to a HEAD request.

A correct but inefficient implementation.

respondToPost(trans)

resultForException(e, trans)
Get text for exception.

Given an unhandled exception, returns the string that should be sent back in the RPC response as controlled
by the RPCExceptionReturn setting.

runMethodForTransaction(transaction, method, *args, **kw)

static runTransaction(transaction)

static sendOK(contentType, contents, trans, contentEncoding=None)
Send a 200 OK response with the given contents.

148 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

sendResponse(trans, response)
Timestamp the response dict and send it.

serverSidePath(path=None)
Return the filesystem path of the page on the server.

setFactory(factory)

sleep(transaction)
End transaction.

transaction()

Get the corresponding transaction.

Most uses of RPC will not need this.

static useBinaryPickle()

Determine whether binary pickling format shall be used.

When this returns True, the highest available binary pickling format will be used. Override this to return
False to use the less-efficient text pickling format.

19.1.14 PlugIn

class PlugIn.PlugIn(application, name, module)
Bases: object

Template for Webware Plug-ins.

A plug-in is a software component that is loaded by Webware in order to provide additional Webware functionality
without necessarily having to modify Webware’s source. The most infamous plug-in is PSP (Python Server
Pages) which ships with Webware.

Plug-ins often provide additional servlet factories, servlet subclasses, examples and documentation. Ultimately,
it is the plug-in author’s choice as to what to provide and in what manner.

Instances of this class represent plug-ins which are ultimately Python packages.

A plug-in must also be a Webware component which means that it will have a Properties.py file advertising its
name, version, requirements, etc. You can ask a plug-in for its properties().

The plug-in/package must have an __init__.py which must contain the following function:

def installInWebware(application):
...

This function is invoked to take whatever actions are needed to plug the new component into Webware. See PSP
for an example.

If you ask an Application for its plugIns(), you will get a list of instances of this class.

The path of the plug-in is added to sys.path, if it’s not already there. This is convenient, but we may need a more
sophisticated solution in the future to avoid name collisions between plug-ins.

Note that this class is hardly ever subclassed. The software in the plug-in package is what provides new function-
ality and there is currently no way to tell the Application to use custom subclasses of this class on a case-by-case
basis (and so far there is currently no need).

Instructions for invoking:

19.1. Core Classes 149



Webware for Python 3, Release 3.0.9

# 'self' is typically Application. It gets passed to installInWebware()
p = PlugIn(self, 'Foo', '../Foo')
willNotLoadReason = plugIn.load()
if willNotLoadReason:

print(f'Plug-in {path} cannot be loaded because:')
print(willNotLoadReason)
return None

p.install()
# Note that load() and install() could raise exceptions.
# You should expect this.

__init__(application, name, module)
Initializes the plug-in with basic information.

This lightweight constructor does not access the file system.

directory()

Return the directory in which the plug-in resides. Example: ‘..’

examplePages()

examplePagesContext()

hasExamplePages()

install()

Install plug-in by invoking its installInWebware() function.

load(verbose=True)
Loads the plug-in into memory, but does not yet install it.

Will return None on success, otherwise a message (string) that says why the plug-in could not be loaded.

module()

Return the Python module object of the plug-in.

name()

Return the name of the plug-in. Example: ‘Foo’

path()

Return the full path of the plug-in. Example: ‘../Foo’

properties()

Return the properties.

This is a dictionary-like object, of the plug-in which comes from its Properties.py file. See MiscU-
tils.PropertiesObject.py.

serverSidePath(path=None)

setUpExamplePages()

Add a context for the examples.

exception PlugIn.PlugInError

Bases: Exception

Plug-in error.

150 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

__init__(*args, **kwargs)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

19.1.15 Properties

19.1.16 Request

An abstract request

class Request.Request

Bases: object

The abstract request class.

Request is a base class that offers the following:

• A time stamp (indicating when the request was made)

• An input stream

• Remote request information (address, name)

• Local host information (address, name, port)

• A security indicator

Request is an abstract class; developers typically use HTTPRequest.

__init__()

Initialize the request.

Subclasses are responsible for invoking super and initializing self._time.

clearTransaction()

input()

Return a file-style object that the contents can be read from.

isSecure()

Check whether this is a secure channel.

Returns true if request was made using a secure channel, such as HTTPS. This currently always returns
false, since secure channels are not yet supported.

localAddress()

Get local address.

Returns a string containing the Internet Protocol (IP) address of the local host (e.g., the server) that received
the request.

static localName()

Get local name.

Returns the fully qualified name of the local host (e.g., the server) that received the request.

19.1. Core Classes 151



Webware for Python 3, Release 3.0.9

localPort()

Get local port.

Returns the port of the local host (e.g., the server) that received the request.

remoteAddress()

Get the remote address.

Returns a string containing the Internet Protocol (IP) address of the client that sent the request.

remoteName()

Get the remote name.

Returns the fully qualified name of the client that sent the request, or the IP address of the client if the name
cannot be determined.

responseClass()

Get the corresponding response class.

setTransaction(trans)
Set a transaction container.

time()

timeStamp()

Return time() as human readable string for logging and debugging.

transaction()

Get the transaction container.

writeExceptionReport(handler)

19.1.17 Response

An abstract response

class Response.Response(trans, strmOut)
Bases: object

The abstract response class.

Response is a base class that offers the following:

• A time stamp (indicating when the response was finished)

• An output stream

Response is an abstract class; developers typically use HTTPResponse.

__init__(trans, strmOut)

clearTransaction()

deliver()

endTime()

isCommitted()

152 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

recordEndTime()

Record the end time of the response.

Stores the current time as the end time of the response. This should be invoked at the end of deliver(). It
may also be invoked by the application for those responses that never deliver due to an error.

reset()

streamOut()

write(output)

writeExceptionReport(handler)

19.1.18 RPCServlet

RPC servlets.

class RPCServlet.RPCServlet

Bases: HTTPServlet

RPCServlet is a base class for RPC servlets.

__init__()

Subclasses must invoke super.

awake(transaction)
Begin transaction.

call(methodName, *args, **keywords)
Call custom method.

Subclasses may override this class for custom handling of methods.

canBeReused()

Returns whether a single servlet instance can be reused.

The default is True, but subclasses con override to return False. Keep in mind that performance may
seriously be degraded if instances can’t be reused. Also, there’s no known good reasons not to reuse an
instance. Remember the awake() and sleep() methods are invoked for every transaction. But just in case,
your servlet can refuse to be reused.

canBeThreaded()

Return whether the servlet can be multithreaded.

This value should not change during the lifetime of the object. The default implementation returns False.
Note: This is not currently used.

close()

exposedMethods()

Get exposed methods.

Subclasses should return a list of methods that will be exposed through XML-RPC.

19.1. Core Classes 153



Webware for Python 3, Release 3.0.9

static handleException(transaction)
Handle exception.

If ReportRPCExceptionsInWebware is set to True, then flush the response (because we don’t want the
standard HTML traceback to be appended to the response) and then handle the exception in the standard
Webware way. This means logging it to the console, storing it in the error log, sending error email, etc.
depending on the settings.

lastModified(_trans)
Get time of last modification.

Return this object’s Last-Modified time (as a float), or None (meaning don’t know or not applicable).

log(message)
Log a message.

This can be invoked to print messages concerning the servlet. This is often used by self to relay important
information back to developers.

name()

Return the name which is simple the name of the class.

Subclasses should not override this method. It is used for logging and debugging.

static notImplemented(trans)

open()

respond(transaction)
Respond to a request.

Invokes the appropriate respondToSomething() method depending on the type of request (e.g., GET, POST,
PUT, . . . ).

respondToHead(trans)
Respond to a HEAD request.

A correct but inefficient implementation.

resultForException(e, trans)
Get text for exception.

Given an unhandled exception, returns the string that should be sent back in the RPC response as controlled
by the RPCExceptionReturn setting.

runMethodForTransaction(transaction, method, *args, **kw)

static runTransaction(transaction)

static sendOK(contentType, contents, trans, contentEncoding=None)
Send a 200 OK response with the given contents.

serverSidePath(path=None)
Return the filesystem path of the page on the server.

setFactory(factory)

sleep(transaction)
End transaction.

154 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

transaction()

Get the corresponding transaction.

Most uses of RPC will not need this.

19.1.19 Servlet

Abstract servlets

class Servlet.Servlet

Bases: object

A general servlet.

A servlet is a key portion of a server-based application that implements the semantics of a particular request
by providing a response. This abstract class defines servlets at a very high level. Most often, developers will
subclass HTTPServlet or even Page.

Servlets can be created once, then used and destroyed, or they may be reused several times over (it’s up to the
server). Therefore, servlet developers should take the proper actions in awake() and sleep() so that reuse can
occur.

Objects that participate in a transaction include:

• Application

• Request

• Transaction

• Session

• Servlet

• Response

The awake(), respond() and sleep() methods form a message sandwich. Each is passed an instance of Transaction
which gives further access to all the objects involved.

__init__()

Subclasses must invoke super.

awake(transaction)
Send the awake message.

This message is sent to all objects that participate in the request-response cycle in a top-down fashion, prior
to respond(). Subclasses must invoke super.

canBeReused()

Returns whether a single servlet instance can be reused.

The default is True, but subclasses con override to return False. Keep in mind that performance may
seriously be degraded if instances can’t be reused. Also, there’s no known good reasons not to reuse an
instance. Remember the awake() and sleep() methods are invoked for every transaction. But just in case,
your servlet can refuse to be reused.

canBeThreaded()

Return whether the servlet can be multithreaded.

This value should not change during the lifetime of the object. The default implementation returns False.
Note: This is not currently used.

19.1. Core Classes 155



Webware for Python 3, Release 3.0.9

close()

log(message)
Log a message.

This can be invoked to print messages concerning the servlet. This is often used by self to relay important
information back to developers.

name()

Return the name which is simple the name of the class.

Subclasses should not override this method. It is used for logging and debugging.

open()

respond(transaction)
Respond to a request.

runMethodForTransaction(transaction, method, *args, **kw)

static runTransaction(transaction)

serverSidePath(path=None)
Return the filesystem path of the page on the server.

setFactory(factory)

sleep(transaction)
Send the sleep message.

19.1.20 ServletFactory

Servlet factory template.

class ServletFactory.PythonServletFactory(application)
Bases: ServletFactory

The factory for Python servlets.

This is the factory for ordinary Python servlets whose extensions are empty or .py. The servlets are unique per
file since the file itself defines the servlet.

__init__(application)
Create servlet factory.

Stores a reference to the application in self._app, because subclasses may or may not need to talk back to
the application to do their work.

extensions()

Return a list of extensions that match this handler.

Extensions should include the dot. An empty string indicates a file with no extension and is a valid value.
The extension ‘.*’ is a special case that is looked for a URL’s extension doesn’t match anything.

flushCache()

Flush the servlet cache and start fresh.

Servlets that are currently in the wild may find their way back into the cache (this may be a problem).

156 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

importAsPackage(transaction, serverSidePathToImport)
Import requested module.

Imports the module at the given path in the proper package/subpackage for the current request. For example,
if the transaction has the URL http://localhost/Webware/MyContextDirectory/MySubdirectory/MyPage
and path = ‘some/random/path/MyModule.py’ and the context is configured to have the name ‘MyCon-
text’ then this function imports the module at that path as MyContext.MySubdirectory.MyModule . Note
that the context name may differ from the name of the directory containing the context, even though they
are usually the same by convention.

Note that the module imported may have a different name from the servlet name specified in the URL. This
is used in PSP.

loadClass(transaction, path)
Load the appropriate class.

Given a transaction and a path, load the class for creating these servlets. Caching, pooling, and threadsafe-
ness are all handled by servletForTransaction. This method is not expected to be threadsafe.

name()

Return the name of the factory.

This is a convenience for the class name.

returnServlet(servlet)
Return servlet to the pool.

Called by Servlet.close(), which returns the servlet to the servlet pool if necessary.

servletForTransaction(transaction)
Return a new servlet that will handle the transaction.

This method handles caching, and will call loadClass(trans, filepath) if no cache is found. Caching is
generally controlled by servlets with the canBeReused() and canBeThreaded() methods.

uniqueness()

Return uniqueness type.

Returns a string to indicate the uniqueness of the ServletFactory’s servlets. The Application needs to know
if the servlets are unique per file, per extension or per application.

Return values are ‘file’, ‘extension’ and ‘application’.

NOTE: Application so far only supports ‘file’ uniqueness.

class ServletFactory.ServletFactory(application)
Bases: object

Servlet factory template.

ServletFactory is an abstract class that defines the protocol for all servlet factories.

Servlet factories are used by the Application to create servlets for transactions.

A factory must inherit from this class and override uniqueness(), extensions() and either loadClass() or servlet-
ForTransaction(). Do not invoke the base class methods as they all raise AbstractErrors.

Each method is documented below.

19.1. Core Classes 157

http://localhost/Webware/MyContextDirectory/MySubdirectory/MyPage


Webware for Python 3, Release 3.0.9

__init__(application)
Create servlet factory.

Stores a reference to the application in self._app, because subclasses may or may not need to talk back to
the application to do their work.

extensions()

Return a list of extensions that match this handler.

Extensions should include the dot. An empty string indicates a file with no extension and is a valid value.
The extension ‘.*’ is a special case that is looked for a URL’s extension doesn’t match anything.

flushCache()

Flush the servlet cache and start fresh.

Servlets that are currently in the wild may find their way back into the cache (this may be a problem).

importAsPackage(transaction, serverSidePathToImport)
Import requested module.

Imports the module at the given path in the proper package/subpackage for the current request. For example,
if the transaction has the URL http://localhost/Webware/MyContextDirectory/MySubdirectory/MyPage
and path = ‘some/random/path/MyModule.py’ and the context is configured to have the name ‘MyCon-
text’ then this function imports the module at that path as MyContext.MySubdirectory.MyModule . Note
that the context name may differ from the name of the directory containing the context, even though they
are usually the same by convention.

Note that the module imported may have a different name from the servlet name specified in the URL. This
is used in PSP.

loadClass(transaction, path)
Load the appropriate class.

Given a transaction and a path, load the class for creating these servlets. Caching, pooling, and threadsafe-
ness are all handled by servletForTransaction. This method is not expected to be threadsafe.

name()

Return the name of the factory.

This is a convenience for the class name.

returnServlet(servlet)
Return servlet to the pool.

Called by Servlet.close(), which returns the servlet to the servlet pool if necessary.

servletForTransaction(transaction)
Return a new servlet that will handle the transaction.

This method handles caching, and will call loadClass(trans, filepath) if no cache is found. Caching is
generally controlled by servlets with the canBeReused() and canBeThreaded() methods.

uniqueness()

Return uniqueness type.

Returns a string to indicate the uniqueness of the ServletFactory’s servlets. The Application needs to know
if the servlets are unique per file, per extension or per application.

Return values are ‘file’, ‘extension’ and ‘application’.

NOTE: Application so far only supports ‘file’ uniqueness.

158 Chapter 19. API Reference

http://localhost/Webware/MyContextDirectory/MySubdirectory/MyPage


Webware for Python 3, Release 3.0.9

ServletFactory.iskeyword()

x.__contains__(y) <==> y in x.

19.1.21 Session

Implementation of client sessions.

class Session.Session(trans, identifier=None)
Bases: object

Implementation of client sessions.

All methods that deal with time stamps, such as creationTime(), treat time as the number of seconds since January
1, 1970.

Session identifiers are stored in cookies. Therefore, clients must have cookies enabled.

Note that the session id should be a string that is valid as part of a filename. This is currently true, and should
be maintained if the session id generation technique is modified. Session ids can be used in filenames.

__init__(trans, identifier=None)

awake(_trans)
Let the session awake.

Invoked during the beginning of a transaction, giving a Session an opportunity to perform any required
setup. The default implementation updates the ‘lastAccessTime’.

creationTime()

Return the time when this session was created.

delValue(name)

expiring()

Let the session expire.

Called when session is expired by the application. Subclasses should invoke super. Session store
__delitem__()s should invoke if not isExpired().

hasValue(name)

identifier()

Return a string that uniquely identifies the session.

This method will create the identifier if needed.

invalidate()

Invalidate the session.

It will be discarded the next time it is accessed.

isDirty()

Check whether the session is dirty (has unsaved changes).

isExpired()

Check whether the session has been previously expired.

See also: expiring()

19.1. Core Classes 159



Webware for Python 3, Release 3.0.9

isNew()

Check whether the session is new.

lastAccessTime()

Get last access time.

Returns the last time the user accessed the session through interaction. This attribute is updated in awake(),
which is invoked at the beginning of a transaction.

numTransactions()

Get number of transactions.

Returns the number of transactions in which the session has been used.

respond(trans)
Let the session respond to a request.

The default implementation does nothing, but could do something in the future. Subclasses should invoke
super.

sessionEncode(url)
Encode the session ID as a parameter to a url.

setDirty(dirty=True)
Set the dirty status of the session.

setTimeout(timeout)
Set the timeout on this session in seconds.

setValue(name, value)

sleep(trans)
Let the session sleep again.

Invoked during the ending of a transaction, giving a Session an opportunity to perform any required shut-
down. The default implementation does nothing, but could do something in the future. Subclasses should
invoke super.

timeout()

Return the timeout for this session in seconds.

value(name, default=<class 'MiscUtils.NoDefault'>)

values()

writeExceptionReport(handler)

exception Session.SessionError

Bases: Exception

Client session error

__init__(*args, **kwargs)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

160 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

19.1.22 SessionDynamicStore

Session store using memory and files.

class SessionDynamicStore.SessionDynamicStore(app)
Bases: SessionStore

Stores the session in memory and in files.

To use this Session Store, set SessionStore in Application.config to ‘Dynamic’. Other variables which can be set
in Application.config are:

‘MaxDynamicMemorySessions’, which sets the maximum number of sessions that can be in memory at one
time. Default is 10,000.

‘DynamicSessionTimeout’, which sets the default time for a session to stay in memory with no activity. Default
is 15 minutes. When specifying this in Application.config, use minutes.

One-shot sessions (usually created by crawler bots) aren’t moved to FileStore on periodical clean-up. They are
still saved on SessionStore shutdown. This reduces the number of files in the Sessions directory.

__init__(app)
Create both a file and a memory store.

application()

Return the application owning the session store.

cleanStaleSessions(task=None)
Clean stale sessions.

Called by the Application to tell this store to clean out all sessions that have exceeded their lifetime. We
want to have their native class functions handle it, though.

Ideally, intervalSweep would be run more often than the cleanStaleSessions functions for the actual stores.
This may need to wait until we get the TaskKit in place, though.

The problem is the FileStore.cleanStaleSessions() method can take a while to run. So here, we only run the
file sweep every fourth time.

clear()

Clear the session store in memory and remove all session files.

decoder()

Return the value deserializer for the store.

encoder()

Return the value serializer for the store.

get(key, default=None)
Return value if key available, else return the default.

has_key(key)
Check whether the session store has a given key.

intervalSweep()

The session sweeper interval function.

The interval function moves sessions from memory to file and can be run more often than the full cleanStale-
Sessions function.

19.1. Core Classes 161



Webware for Python 3, Release 3.0.9

items()

Return a list with the (key, value) pairs for all sessions.

iteritems()

Return an iterator over the (key, value) pairs for all sessions.

iterkeys()

Return an iterator over the stored session keys.

itervalues()

Return an iterator over the stored values of all sessions.

keys()

Return a list with all keys of all the stored sessions.

memoryKeysInAccessTimeOrder()

Fetch memory store’s keys in ascending order of last access time.

moveToFile(key)
Move the value for a session from memory to file.

moveToMemory(key)
Move the value for a session from file to memory.

pop(key, default=<class 'MiscUtils.NoDefault'>)
Return value if key available, else default (also remove key).

setEncoderDecoder(encoder, decoder)
Set the serializer and deserializer for the store.

setdefault(key, default=None)
Return value if key available, else default (also setting it).

storeAllSessions()

Permanently save all sessions in the store.

storeSession(session)
Save potentially changed session in the store.

values()

Return a list with the values of all stored sessions.

19.1.23 SessionFileStore

Session store using files.

class SessionFileStore.SessionFileStore(app, restoreFiles=None)
Bases: SessionStore

A session file store.

Stores the sessions on disk in the Sessions/ directory, one file per session.

__init__(app, restoreFiles=None)
Initialize the session file store.

If restoreFiles is true, and sessions have been saved to file, the store will be initialized from these files.

162 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

application()

Return the application owning the session store.

cleanStaleSessions(_task=None)
Clean stale sessions.

Called by the Application to tell this store to clean out all sessions that have exceeded their lifetime.

clear()

Clear the session file store, removing all of the session files.

decoder()

Return the value deserializer for the store.

encoder()

Return the value serializer for the store.

filenameForKey(key)
Return the name of the session file for the given key.

get(key, default=None)
Return value if key available, else return the default.

has_key(key)
Check whether the session store has a given key.

items()

Return a list with the (key, value) pairs for all sessions.

iteritems()

Return an iterator over the (key, value) pairs for all sessions.

iterkeys()

Return an iterator over the stored session keys.

itervalues()

Return an iterator over the stored values of all sessions.

keys()

Return a list with the keys of all the stored sessions.

pop(key, default=<class 'MiscUtils.NoDefault'>)
Return value if key available, else default (also remove key).

removeKey(key)
Remove the session file for the given key.

setEncoderDecoder(encoder, decoder)
Set the serializer and deserializer for the store.

setdefault(key, default=None)
Return value if key available, else default (also setting it).

storeAllSessions()

Permanently save all sessions in the store.

storeSession(session)
Save session, writing it to the session file now.

values()

Return a list with the values of all stored sessions.

19.1. Core Classes 163



Webware for Python 3, Release 3.0.9

19.1.24 SessionMemcachedStore

Session store using the Memcached memory object caching system.

class SessionMemcachedStore.SessionMemcachedStore(app)
Bases: SessionStore

A session store using Memcached.

Stores the sessions in a single Memcached store using ‘last write wins’ semantics. This increases fault tolerance
and allows server clustering. In clustering configurations with concurrent writes for the same session(s) the last
writer will always overwrite the session.

The keys are prefixed with a configurable namespace, allowing you to store other data in the same Memcached
system.

Cleaning/timing out of sessions is performed by Memcached itself since no single application can know about
the existence of all sessions or the last access for a given session. Besides it is built in Memcached functionality.
Consequently, correct sizing of Memcached is necessary to hold all user’s session data.

Due to the way Memcached works, methods requiring access to the keys or for clearing the store do not work.
You can configure whether you want to ignore such calls or raise an error in this case. By default, you will get
a warning. It would be possible to emulate these functions by storing additional data in the memcache, such
as a namespace counter or the number or even the full list of keys. However, if you are using more than one
application instance, this would require fetching that data every time, since we cannot know whether another
instance changed it. So we refrained from doing such sophisticated trickery and instead kept the implementation
intentionally very simple and fast.

You need to install python-memcached to be able to use this module: https://www.tummy.com/software/
python-memcached/ You also need a Memcached server: https://memcached.org/

Contributed by Steve Schwarz, March 2010. Small improvements by Christoph Zwerschke, April 2010.

__init__(app)
Initialize the session store.

Subclasses must invoke super.

application()

Return the application owning the session store.

cleanStaleSessions(_task=None)
Clean stale sessions.

Memcached does this on its own, so we do nothing here.

clear()

Clear the session store, removing all of its items.

Not supported by Memcached. We could emulate this by incrementing an additional namespace counter,
but then we would need to fetch the current counter from the memcache before every access in order to
keep different application instances in sync.

decoder()

Return the value deserializer for the store.

encoder()

Return the value serializer for the store.

get(key, default=None)
Return value if key available, else return the default.

164 Chapter 19. API Reference

https://www.tummy.com/software/python-memcached/
https://www.tummy.com/software/python-memcached/
https://memcached.org/


Webware for Python 3, Release 3.0.9

has_key(key)
Check whether the session store has a given key.

items()

Return a list with the (key, value) pairs for all sessions.

iteritems()

Return an iterator over the (key, value) pairs for all sessions.

iterkeys()

Return an iterator over the stored session keys.

itervalues()

Return an iterator over the stored values of all sessions.

keys()

Return a list with the keys of all the stored sessions.

Not supported by Memcached (see FAQ for explanation).

mcKey(key)
Create the real key with namespace to be used with Memcached.

pop(key, default=<class 'MiscUtils.NoDefault'>)
Return value if key available, else default (also remove key).

setEncoderDecoder(encoder, decoder)
Set the serializer and deserializer for the store.

setdefault(key, default=None)
Return value if key available, else default (also setting it).

storeAllSessions()

Permanently save all sessions in the store.

Should be used (only) when the application server is shut down. This closes the connection to the Mem-
cached servers.

storeSession(session)
Save potentially changed session in the store.

values()

Return a list with the values of all stored sessions.

19.1.25 SessionMemoryStore

Session store in memory.

class SessionMemoryStore.SessionMemoryStore(app, restoreFiles=None)
Bases: SessionStore

Stores the session in memory as a dictionary.

This is fast and secure when you have one, persistent application instance.

__init__(app, restoreFiles=None)
Initialize the session memory store.

If restoreFiles is true, and sessions have been saved to file, the store will be initialized from these files.

19.1. Core Classes 165



Webware for Python 3, Release 3.0.9

application()

Return the application owning the session store.

cleanStaleSessions(_task=None)
Clean stale sessions.

Called by the Application to tell this store to clean out all sessions that have exceeded their lifetime.

clear()

Clear the session store, removing all of its items.

decoder()

Return the value deserializer for the store.

encoder()

Return the value serializer for the store.

get(key, default=None)
Return value if key available, else return the default.

has_key(key)
Check whether the session store has a given key.

items()

Return a list with the (key, value) pairs for all sessions.

iteritems()

Return an iterator over the (key, value) pairs for all sessions.

iterkeys()

Return an iterator over the stored session keys.

itervalues()

Return an iterator over the stored values of all sessions.

keys()

Return a list with the keys of all the stored sessions.

pop(key, default=<class 'MiscUtils.NoDefault'>)
Return value if key available, else default (also remove key).

setEncoderDecoder(encoder, decoder)
Set the serializer and deserializer for the store.

setdefault(key, default=None)
Return value if key available, else default (also setting it).

storeAllSessions()

Permanently save all sessions in the store.

storeSession(session)
Save already potentially changed session in the store.

values()

Return a list with the values of all stored sessions.

166 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

19.1.26 SessionRedisStore

Session store using the Redis in-memory data store.

class SessionRedisStore.SessionRedisStore(app)
Bases: SessionStore

A session store using Redis.

Stores the sessions in a single Redis store using ‘last write wins’ semantics. This increases fault tolerance and
allows server clustering. In clustering configurations with concurrent writes for the same session(s) the last writer
will always overwrite the session.

The keys are prefixed with a configurable namespace, allowing you to store other data in the same Redis system.

Cleaning/timing out of sessions is performed by Redis itself since no single application can know about the exis-
tence of all sessions or the last access for a given session. Besides it is built in Redis functionality. Consequently,
correct sizing of Redis is necessary to hold all user’s session data.

You need to install the redis client to be able to use this module: https://pypi.python.org/pypi/redis You also need
a Redis server: https://redis.io/

Contributed by Christoph Zwerschke, August 2016.

__init__(app)
Initialize the session store.

Subclasses must invoke super.

application()

Return the application owning the session store.

cleanStaleSessions(_task=None)
Clean stale sessions.

Redis does this on its own, so we do nothing here.

clear()

Clear the session store, removing all of its items.

decoder()

Return the value deserializer for the store.

encoder()

Return the value serializer for the store.

get(key, default=None)
Return value if key available, else return the default.

has_key(key)
Check whether the session store has a given key.

items()

Return a list with the (key, value) pairs for all sessions.

iteritems()

Return an iterator over the (key, value) pairs for all sessions.

iterkeys()

Return an iterator over the stored session keys.

19.1. Core Classes 167

https://pypi.python.org/pypi/redis
https://redis.io/


Webware for Python 3, Release 3.0.9

itervalues()

Return an iterator over the stored values of all sessions.

keys()

Return a list with the keys of all the stored sessions.

pop(key, default=<class 'MiscUtils.NoDefault'>)
Return value if key available, else default (also remove key).

redisKey(key)
Create the real key with namespace to be used with Redis.

setEncoderDecoder(encoder, decoder)
Set the serializer and deserializer for the store.

setdefault(key, default=None)
Return value if key available, else default (also setting it).

storeAllSessions()

Permanently save all sessions in the store.

Should be used (only) when the application server is shut down. This closes the connections to the Redis
server.

storeSession(session)
Save potentially changed session in the store.

values()

Return a list with the values of all stored sessions.

19.1.27 SessionShelveStore

Session store using the shelve module.

class SessionShelveStore.SessionShelveStore(app, restoreFiles=None, filename=None)
Bases: SessionStore

A session store implemented with a shelve object.

To use this store, set SessionStore in Application.config to ‘Shelve’.

__init__(app, restoreFiles=None, filename=None)
Initialize the session shelf.

If restoreFiles is true, existing shelve file(s) will be reused.

application()

Return the application owning the session store.

cleanStaleSessions(task=None)
Clean stale sessions.

clear()

Clear the session store, removing all of its items.

decoder()

Return the value deserializer for the store.

168 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

encoder()

Return the value serializer for the store.

get(key, default=None)
Return value if key available, else return the default.

has_key(key)
Check whether the session store has a given key.

intervalSweep()

The session sweeper interval function.

items()

Return a list with the (key, value) pairs for all sessions.

iteritems()

Return an iterator over the (key, value) pairs for all sessions.

iterkeys()

Return an iterator over the stored session keys.

itervalues()

Return an iterator over the stored values of all sessions.

keys()

Return a list with the keys of all the stored sessions.

pop(key, default=<class 'MiscUtils.NoDefault'>)
Return value if key available, else default (also remove key).

setEncoderDecoder(encoder, decoder)
Set the serializer and deserializer for the store.

setdefault(key, default=None)
Return value if key available, else default (also setting it).

storeAllSessions()

Permanently save all sessions in the store.

Should be used (only) when the application server is shut down.

storeSession(session)
Save potentially changed session in the store.

values()

Return a list with the values of all stored sessions.

19.1.28 SessionStore

A general session store.

class SessionStore.SessionStore(app)
Bases: object

A general session store.

SessionStores are dictionary-like objects used by Application to store session state. This class is abstract and it’s
up to the concrete subclass to implement several key methods that determine how sessions are stored (such as in
memory, on disk or in a database). We assume that session keys are always strings.

19.1. Core Classes 169



Webware for Python 3, Release 3.0.9

Subclasses often encode sessions for storage somewhere. In light of that, this class also defines methods en-
coder(), decoder() and setEncoderDecoder(). The encoder and decoder default to the load() and dump() func-
tions of the pickle module. However, using the setEncoderDecoder() method, you can use the functions from
marshal (if appropriate) or your own encoding scheme. Subclasses should use encoder() and decoder() (and not
pickle.load() and pickle.dump()).

Subclasses may rely on the attribute self._app to point to the application.

Subclasses should be named SessionFooStore since Application expects “Foo” to appear for the “SessionStore”
setting and automatically prepends Session and appends Store. Currently, you will also need to add another
import statement in Application.py. Search for SessionStore and you’ll find the place.

TO DO

• Should there be a check-in/check-out strategy for sessions to prevent concurrent requests on the same ses-
sion? If so, that can probably be done at this level (as opposed to pushing the burden on various subclasses).

__init__(app)
Initialize the session store.

Subclasses must invoke super.

application()

Return the application owning the session store.

cleanStaleSessions(_task=None)
Clean stale sessions.

Called by the Application to tell this store to clean out all sessions that have exceeded their lifetime.

clear()

Clear the session store, removing all of its items.

Subclasses must implement this method.

decoder()

Return the value deserializer for the store.

encoder()

Return the value serializer for the store.

get(key, default=None)
Return value if key available, else return the default.

has_key(key)
Check whether the session store has a given key.

items()

Return a list with the (key, value) pairs for all sessions.

iteritems()

Return an iterator over the (key, value) pairs for all sessions.

iterkeys()

Return an iterator over the stored session keys.

itervalues()

Return an iterator over the stored values of all sessions.

170 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

keys()

Return a list with the keys of all the stored sessions.

Subclasses must implement this method.

pop(key, default=None)
Return value if key available, else default (also remove key).

Subclasses must implement this method.

setEncoderDecoder(encoder, decoder)
Set the serializer and deserializer for the store.

setdefault(key, default=None)
Return value if key available, else default (also setting it).

Subclasses must implement this method.

storeAllSessions()

Permanently save all sessions in the store.

Used when the application server is shut down.

Subclasses must implement this method.

storeSession(session)
Save potentially changed session in the store.

Used at the end of transactions.

Subclasses must implement this method.

values()

Return a list with the values of all stored sessions.

SessionStore.dumpWithHighestProtocol(obj, f )
Same as pickle.dump, but by default with the highest protocol.

19.1.29 SidebarPage

Webware page template class for pages with a sidebar.

class SidebarPage.SidebarPage

Bases: Page

Webware page template class for pages with a sidebar.

SidebarPage is an abstract superclass for pages that have a sidebar (as well as a header and “content well”). Side-
bars are normally used for navigation (e.g., a menu or list of links), showing small bits of info and occasionally
a simple form (such as login or search).

Subclasses should override cornerTitle(), writeSidebar() and writeContent() (and title() if necessary; see Page).

The utility methods menuHeading() and menuItem() can be used by subclasses, typically in their implementation
of writeSidebar().

Webware itself uses this class: Examples/ExamplePage and Admin/AdminPage both inherit from it.

__init__()

Subclasses must invoke super.

19.1. Core Classes 171



Webware for Python 3, Release 3.0.9

actions()

The allowed actions.

Returns a list or a set of method names that are allowable actions from HTML forms. The default imple-
mentation returns []. See _respond for more about actions.

application()

The Application instance we’re using.

awake(transaction)
Let servlet awake.

Makes instance variables from the transaction. This is where Page becomes unthreadsafe, as the page is
tied to the transaction. This is also what allows us to implement functions like write, where you don’t need
to pass in the transaction or response.

callMethodOfServlet(url, method, *args, **kwargs)
Call a method of another servlet.

See Application.callMethodOfServlet for details. The main difference is that here you don’t have to pass in
the transaction as the first argument.

canBeReused()

Returns whether a single servlet instance can be reused.

The default is True, but subclasses con override to return False. Keep in mind that performance may
seriously be degraded if instances can’t be reused. Also, there’s no known good reasons not to reuse an
instance. Remember the awake() and sleep() methods are invoked for every transaction. But just in case,
your servlet can refuse to be reused.

canBeThreaded()

Declares whether servlet can be threaded.

Returns False because of the instance variables we set up in awake.

close()

cornerTitle()

defaultAction()

The default action in a Page is to writeHTML().

static endResponse()

End response.

When this method is called during awake or respond, servlet processing will end immediately, and the
accumulated response will be sent.

Note that sleep will still be called, providing a chance to clean up or free any resources.

forward(url)
Forward request.

Forwards this request to another servlet. See Application.forward for details. The main difference is that
here you don’t have to pass in the transaction as the first argument.

handleAction(action)
Handle action.

Invoked by _respond when a legitimate action has been found in a form. Invokes preAction, the actual
action method and postAction.

172 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

Subclasses rarely override this method.

htBodyArgs()

The attributes for the <body> element.

Returns the arguments used for the HTML <body> tag. Invoked by writeBody().

With the prevalence of stylesheets (CSS), you can probably skip this particular HTML feature, but for
historical reasons this sets the page to black text on white.

htRootArgs()

The attributes for the <html> element.

Returns the arguments used for the root HTML tag. Invoked by writeHTML() and preAction().

Authors are encouraged to specify a lang attribute, giving the document’s language.

htTitle()

The page title as HTML.

Return self.title(). Subclasses sometimes override this to provide an HTML enhanced version of the title.
This is the method that should be used when including the page title in the actual page contents.

static htmlDecode(s)
HTML decode special characters.

Alias for WebUtils.Funcs.htmlDecode. Decodes HTML entities.

static htmlEncode(s)
HTML encode special characters. Alias for WebUtils.Funcs.htmlEncode, quotes the special characters
&, <, >, and “

includeURL(url)
Include output from other servlet.

Includes the response of another servlet in the current servlet’s response. See Application.includeURL for
details. The main difference is that here you don’t have to pass in the transaction as the first argument.

lastModified(_trans)
Get time of last modification.

Return this object’s Last-Modified time (as a float), or None (meaning don’t know or not applicable).

log(message)
Log a message.

This can be invoked to print messages concerning the servlet. This is often used by self to relay important
information back to developers.

menuHeading(title)

menuItem(title, url=None, suffix=None, indentLevel=1)

methodNameForAction(name)
Return method name for an action name.

Invoked by _respond() to determine the method name for a given action name which has been derived as
the value of an _action_ field. Since this is usually the label of an HTML submit button in a form, it is
often needed to transform it in order to get a valid method name (for instance, blanks could be replaced by
underscores and the like). This default implementation of the name transformation is the identity, it simply
returns the name. Subclasses should override this method when action names don’t match their method
names; they could “mangle” the action names or look the method names up in a dictionary.

19.1. Core Classes 173



Webware for Python 3, Release 3.0.9

name()

Return the name which is simple the name of the class.

Subclasses should not override this method. It is used for logging and debugging.

static notImplemented(trans)

open()

outputEncoding()

Get the default output encoding of the application.

postAction(actionName)
Things to do after actions.

Simply close the html tag (</html>).

preAction(actionName)
Things to do before actions.

For a page, we first writeDocType(), <html>, and then writeHead().

request()

The request (HTTPRequest) we’re handling.

respond(transaction)
Respond to a request.

Invokes the appropriate respondToSomething() method depending on the type of request (e.g., GET, POST,
PUT, . . . ).

respondToGet(transaction)
Respond to GET.

Invoked in response to a GET request method. All methods are passed to _respond.

respondToHead(trans)
Respond to a HEAD request.

A correct but inefficient implementation.

respondToPost(transaction)
Respond to POST.

Invoked in response to a POST request method. All methods are passed to _respond.

response()

The response (HTTPResponse) we’re handling.

runMethodForTransaction(transaction, method, *args, **kw)

static runTransaction(transaction)

sendRedirectAndEnd(url, status=None)
Send redirect and end.

Sends a redirect back to the client and ends the response. This is a very popular pattern.

sendRedirectPermanentAndEnd(url)
Send permanent redirect and end.

174 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

sendRedirectSeeOtherAndEnd(url)
Send redirect to a URL to be retrieved with GET and end.

This is the proper method for the Post/Redirect/Get pattern.

sendRedirectTemporaryAndEnd(url)
Send temporary redirect and end.

serverSidePath(path=None)
Return the filesystem path of the page on the server.

session()

The session object.

This provides a state for the current user (associated with a browser instance, really). If no session exists,
then a session will be created.

sessionEncode(url=None)
Utility function to access Session.sessionEncode.

Takes a url and adds the session ID as a parameter. This is for cases where you don’t know if the client will
accepts cookies.

setFactory(factory)

sleep(transaction)
Let servlet sleep again.

We unset some variables. Very boring.

title()

The page title.

Subclasses often override this method to provide a custom title. This title should be absent of HTML tags.
This implementation returns the name of the class, which is sometimes appropriate and at least informative.

transaction()

The Transaction we’re currently handling.

static urlDecode(s)
Turn special % characters into actual characters.

This method does the same as the urllib.unquote_plus() function.

static urlEncode(s)
Quotes special characters using the % substitutions.

This method does the same as the urllib.quote_plus() function.

write(*args)
Write to output.

Writes the arguments, which are turned to strings (with str) and concatenated before being written to the
response. Unicode strings must be encoded before they can be written.

writeBanner()

writeBody()

Write the <body> element of the page.

Writes the <body> portion of the page by writing the <body>...</body> (making use of htBodyArgs)
and invoking writeBodyParts in between.

19.1. Core Classes 175



Webware for Python 3, Release 3.0.9

writeBodyParts()

Write the parts included in the <body> element.

Invokes writeContent. Subclasses should only override this method to provide additional page parts such
as a header, sidebar and footer, that a subclass doesn’t normally have to worry about writing.

For writing page-specific content, subclasses should override writeContent instead. This method is in-
tended to be overridden by your SitePage.

See SidebarPage for an example override of this method.

Invoked by writeBody.

writeContent()

Write the unique, central content for the page.

Subclasses should override this method (not invoking super) to write their unique page content.

Invoked by writeBodyParts.

writeContextsMenu()

writeDocType()

Write the DOCTYPE tag.

Invoked by writeHTML to write the <!DOCTYPE ...> tag.

By default this gives the HTML 5 DOCTYPE.

Subclasses may override to specify something else.

writeExceptionReport(handler)
Write extra information to the exception report.

The handler argument is the exception handler, and information is written there (using writeTitle, write,
and writeln). This information is added to the exception report.

See ExceptionHandler for more information.

writeHTML()

Write all the HTML for the page.

Subclasses may override this method (which is invoked by _respond) or more commonly its constituent
methods, writeDocType, writeHead and writeBody.

You will want to override this method if:

• you want to format the entire HTML page yourself

• if you want to send an HTML page that has already been generated

• if you want to use a template that generates the entire page

• if you want to send non-HTML content; in this case, be sure to call
self.response().setHeader(‘Content-Type’, ‘mime/type’).

writeHead()

Write the <head> element of the page.

Writes the <head> portion of the page by writing the <head>...</head> tags and invoking
writeHeadParts in between.

176 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

writeHeadParts()

Write the parts included in the <head> element.

Writes the parts inside the <head>...</head> tags. Invokes writeTitle and then writeMetaData,
writeStyleSheet and writeJavaScript. Subclasses should override the title method and the three
latter methods only.

writeJavaScript()

Write the JavaScript for the page.

This default implementation does nothing. Subclasses should override if necessary.

A typical implementation is:

self.writeln('<script src="ajax.js"></script>')

writeMetaData()

Write the meta data for the page.

This default implementation only specifies the output encoding. Subclasses should override if necessary.

writeSidebar()

writeStyleSheet()

We’re using a simple internal style sheet.

This way we avoid having to care about where an external style sheet should be located when this class is
used in another context.

writeTitle()

Write the <title> element of the page.

Writes the <title> portion of the page. Uses title, which is where you should override.

writeVersions()

writeWebwareDocsMenu()

writeWebwareExitsMenu()

writeWebwareSidebarSections()

Write sidebar sections.

This method (and consequently the methods it invokes) are provided for Webware’s example and admin
pages. It writes sections such as contexts, e-mails, exits and versions.

writeln(*args)
Write to output with newline.

Writes the arguments (like write), adding a newline after. Unicode strings must be encoded before they can
be written.

19.1. Core Classes 177



Webware for Python 3, Release 3.0.9

19.1.30 Transaction

The Transaction container.

class Transaction.Transaction(application, request=None)
Bases: object

The Transaction container.

A transaction serves as:

• A container for all objects involved in the transaction. The objects include application, request, response,
session and servlet.

• A message dissemination point. The messages include awake(), respond() and sleep().

When first created, a transaction has no session. However, it will create or retrieve one upon being asked for
session().

The life cycle of a transaction begins and ends with Application’s dispatchRequest().

__init__(application, request=None)

application()

Get the corresponding application.

awake()

Send awake() to the session (if there is one) and the servlet.

Currently, the request and response do not partake in the awake()-respond()-sleep() cycle. This could defi-
nitely be added in the future if any use was demonstrated for it.

die()

End transaction.

This method should be invoked when the entire transaction is finished with. Currently, this is invoked by
the Application. This method removes references to the different objects in the transaction, breaking cyclic
reference chains and speeding up garbage collection.

dump(file=None)
Dump debugging info to stdout.

duration()

Return the duration, in seconds, of the transaction.

This is basically the response end time minus the request start time.

error()

Return Exception instance if there was any.

errorOccurred()

Check whether a server error occurred.

hasSession()

Return true if the transaction has a session.

request()

Get the corresponding request.

respond()

Respond to the request.

178 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

response()

Get the corresponding response.

servlet()

Return the current servlet that is processing.

Remember that servlets can be nested.

session()

Return the session for the transaction.

A new transaction is created if necessary. Therefore, this method never returns None. Use hasSession() if
you want to find out if a session already exists.

setError(err)
Set Exception instance.

Invoked by the application if an Exception is raised to the application level.

setResponse(response)
Set the corresponding response.

setServlet(servlet)
Set the servlet for processing the transaction.

setSession(session)
Set the session for the transaction.

sleep()

Send sleep() to the session and the servlet.

Note that sleep() is sent in reverse order as awake() (which is typical for shutdown/cleanup methods).

writeExceptionReport(handler)
Write extra information to the exception report.

19.1.31 UnknownFileTypeServlet

Servlet factory for unknown file types.

class UnknownFileTypeServlet.UnknownFileTypeServlet(application)
Bases: HTTPServlet, Configurable

Servlet for unknown file types.

Normally this class is just a “private” utility class for Webware’s purposes. However, you may find it useful
to subclass on occasion, such as when the server side file path is determined by something other than a direct
correlation to the URL. Here is such an example:

from UnknownFileTypeServlet import UnknownFileTypeServlet import os

class Image(UnknownFileTypeServlet):

imageDir = ‘/var/images’

def filename(self, trans):
filename = trans.request().field(‘i’) filename = os.path.join(self.imageDir, filename) return file-
name

19.1. Core Classes 179



Webware for Python 3, Release 3.0.9

__init__(application)
Subclasses must invoke super.

awake(transaction)
Send the awake message.

This message is sent to all objects that participate in the request-response cycle in a top-down fashion, prior
to respond(). Subclasses must invoke super.

canBeReused()

Returns whether a single servlet instance can be reused.

The default is True, but subclasses con override to return False. Keep in mind that performance may
seriously be degraded if instances can’t be reused. Also, there’s no known good reasons not to reuse an
instance. Remember the awake() and sleep() methods are invoked for every transaction. But just in case,
your servlet can refuse to be reused.

canBeThreaded()

Return whether the servlet can be multithreaded.

This value should not change during the lifetime of the object. The default implementation returns False.
Note: This is not currently used.

close()

commandLineConfig()

Return the settings that came from the command-line.

These settings come via addCommandLineSetting().

config()

Return the configuration of the object as a dictionary.

This is a combination of defaultConfig() and userConfig(). This method caches the config.

configFilename()

Return the full name of the user config file.

Users can override the configuration by this config file. Subclasses must override to specify a name. Re-
turning None is valid, in which case no user config file will be loaded.

configName()

Return the name of the configuration file without the extension.

This is the portion of the config file name before the ‘.config’. This is used on the command-line.

configReplacementValues()

Return a dictionary for substitutions in the config file.

This must be a dictionary suitable for use with “string % dict” that should be used on the text in the config
file. If an empty dictionary (or None) is returned, then no substitution will be attempted.

defaultConfig()

Get the default config.

Taken from Application’s ‘UnknownFileTypes’ default setting.

filename(trans)
Return the filename to be served.

A subclass could override this in order to serve files from other disk locations based on some logic.

180 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

hasSetting(name)
Check whether a configuration setting has been changed.

lastModified(trans)
Get time of last modification.

Return this object’s Last-Modified time (as a float), or None (meaning don’t know or not applicable).

log(message)
Log a message.

This can be invoked to print messages concerning the servlet. This is often used by self to relay important
information back to developers.

name()

Return the name which is simple the name of the class.

Subclasses should not override this method. It is used for logging and debugging.

static notImplemented(trans)

open()

printConfig(dest=None)
Print the configuration to the given destination.

The default destination is stdout. A fixed with font is assumed for aligning the values to start at the same
column.

static readConfig(filename)
Read the configuration from the file with the given name.

Raises an UIError if the configuration cannot be read.

This implementation assumes the file is stored in utf-8 encoding with possible BOM at the start, but also
tries to read as latin-1 if it cannot be decoded as utf-8. Subclasses can override this behavior.

static redirectSansScript(trans)
Redirect to web server.

Sends a redirect to a URL that doesn’t contain the script name. Under the right configuration, this will
cause the web server to then be responsible for the URL rather than the WSGI server. Keep in mind that
links off the target page will not include the script name in the URL.

respond(transaction)
Respond to a request.

Invokes the appropriate respondToSomething() method depending on the type of request (e.g., GET, POST,
PUT, . . . ).

respondToGet(trans)
Respond to GET request.

Responds to the transaction by invoking self.foo() for foo is specified by the ‘Technique’ setting.

respondToHead(trans)
Respond to GET request.

Responds to the transaction by invoking self.foo() for foo is specified by the ‘Technique’ setting.

19.1. Core Classes 181



Webware for Python 3, Release 3.0.9

respondToPost(trans)
Respond to POST request.

Invoke self.respondToGet().

Since posts are usually accompanied by data, this might not be the best policy. However, a POST would
most likely be for a CGI, which currently no one is mixing in with their Webware-based web sites.

runMethodForTransaction(transaction, method, *args, **kw)

static runTransaction(transaction)

serveContent(trans)

serverSidePath(path=None)
Return the filesystem path of the page on the server.

setFactory(factory)

setSetting(name, value)
Set a particular configuration setting.

setting(name, default=<class 'MiscUtils.NoDefault'>)
Return the value of a particular setting in the configuration.

shouldCacheContent()

Return whether the content should be cached or not.

Returns a boolean that controls whether or not the content served through this servlet is cached. The
default behavior is to return the CacheContent setting. Subclasses may override to always True or False, or
incorporate some other logic.

sleep(transaction)
Send the sleep message.

userConfig()

Get the user config.

Taken from Application’s ‘UnknownFileTypes’ user setting.

static validTechniques()

class UnknownFileTypeServlet.UnknownFileTypeServletFactory(application)
Bases: ServletFactory

The servlet factory for unknown file types.

I.e. all files other than .py, .psp and the other types we support.

__init__(application)
Create servlet factory.

Stores a reference to the application in self._app, because subclasses may or may not need to talk back to
the application to do their work.

extensions()

Return a list of extensions that match this handler.

Extensions should include the dot. An empty string indicates a file with no extension and is a valid value.
The extension ‘.*’ is a special case that is looked for a URL’s extension doesn’t match anything.

182 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

flushCache()

Flush the servlet cache and start fresh.

Servlets that are currently in the wild may find their way back into the cache (this may be a problem).

importAsPackage(transaction, serverSidePathToImport)
Import requested module.

Imports the module at the given path in the proper package/subpackage for the current request. For example,
if the transaction has the URL http://localhost/Webware/MyContextDirectory/MySubdirectory/MyPage
and path = ‘some/random/path/MyModule.py’ and the context is configured to have the name ‘MyCon-
text’ then this function imports the module at that path as MyContext.MySubdirectory.MyModule . Note
that the context name may differ from the name of the directory containing the context, even though they
are usually the same by convention.

Note that the module imported may have a different name from the servlet name specified in the URL. This
is used in PSP.

loadClass(transaction, path)
Load the appropriate class.

Given a transaction and a path, load the class for creating these servlets. Caching, pooling, and threadsafe-
ness are all handled by servletForTransaction. This method is not expected to be threadsafe.

name()

Return the name of the factory.

This is a convenience for the class name.

returnServlet(servlet)
Return servlet to the pool.

Called by Servlet.close(), which returns the servlet to the servlet pool if necessary.

servletForTransaction(transaction)
Return a new servlet that will handle the transaction.

This method handles caching, and will call loadClass(trans, filepath) if no cache is found. Caching is
generally controlled by servlets with the canBeReused() and canBeThreaded() methods.

uniqueness()

Return uniqueness type.

Returns a string to indicate the uniqueness of the ServletFactory’s servlets. The Application needs to know
if the servlets are unique per file, per extension or per application.

Return values are ‘file’, ‘extension’ and ‘application’.

NOTE: Application so far only supports ‘file’ uniqueness.

19.1.32 URLParser

URLParser

URL parsing is done through objects which are subclasses of the URLParser class. Application delegates most of the
URL parsing to these objects.

Application has a single “root” URL parser, which is used to parse all URLs. This parser then can pass the request on
to other parsers, usually taking off parts of the URL with each step.

19.1. Core Classes 183

http://localhost/Webware/MyContextDirectory/MySubdirectory/MyPage


Webware for Python 3, Release 3.0.9

This root parser is generally ContextParser, which is instantiated and set up by Application (accessible through Appli-
cation.rootURLParser).

class URLParser.ContextParser(app)
Bases: URLParser

Find the context of a request.

ContextParser uses the Application.config context settings to find the context of the request. It then passes
the request to a FileParser rooted in the context path.

The context is the first element of the URL, or if no context matches that then it is the default context (and the
entire URL is passed to the default context’s FileParser).

There is generally only one ContextParser, which can be found as application.rootURLParser().

__init__(app)
Create ContextParser.

ContextParser is usually created by Application, which passes all requests to it.

In __init__ we take the Contexts setting from Application.config and parse it slightly.

absContextPath(path)
Get absolute context path.

Resolves relative paths, which are assumed to be relative to the Application’s serverSidePath (the working
directory).

addContext(name, path)
Add a context to the system.

The context will be imported as a package, going by name, from the given directory path. The directory
doesn’t have to match the context name.

findServletForTransaction(trans)
Returns a servlet for the transaction.

This is the top-level entry point, below it parse is used.

parse(trans, requestPath)
Parse request.

Get the context name, and dispatch to a FileParser rooted in the context’s path.

The context name and file path are stored in the request (accessible through Request.serverSidePath and
Request.contextName).

resolveDefaultContext(dest)
Find default context.

Figure out if the default context refers to an existing context, the same directory as an existing context, or
a unique directory.

Returns the name of the context that the default context refers to, or ‘default’ if the default context is unique.

class URLParser.ServletFactoryManagerClass

Bases: object

Manage servlet factories.

This singleton (called ServletFactoryManager) collects and manages all the servlet factories that are installed.

See addServletFactory for adding new factories, and servletForFile for getting the factories back.

184 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

__init__()

addServletFactory(factory)
Add a new servlet factory.

Servlet factories can add themselves with:

ServletFactoryManager.addServletFactory(factory)

The factory must have an extensions method, which should return a list of extensions that the factory handles
(like ['.ht']). The special extension .*will match any file if no other factory is found. See ServletFactory
for more information.

factoryForFile(path)
Get a factory for a filename.

reset()

servletForFile(trans, path)
Get a servlet for a filename and transaction.

Uses factoryForFile to find the factory, which creates the servlet.

class URLParser.URLParameterParser(fileParser=None)
Bases: URLParser

Strips named parameters out of the URL.

E.g. in /path/SID=123/etc the SID=123 will be removed from the URL, and a field will be set in the request
(so long as no field by that name already exists – if a field does exist the variable is thrown away). These are put
in the place of GET or POST variables.

It should be put in an __init__, like:

from URLParser import URLParameterParser
urlParserHook = URLParameterParser()

Or (slightly less efficient):

from URLParser import URLParameterParser as SubParser

__init__(fileParser=None)

findServletForTransaction(trans)
Returns a servlet for the transaction.

This is the top-level entry point, below it parse is used.

parse(trans, requestPath)
Delegates to parseHook.

static parseHook(trans, requestPath, hook)
Munges the path.

The hook is the FileParser object that originally called this – we just want to strip stuff out of the URL and
then give it back to the FileParser instance, which can actually find the servlet.

19.1. Core Classes 185



Webware for Python 3, Release 3.0.9

class URLParser.URLParser

Bases: object

URLParser is the base class for all URL parsers.

Though its functionality is sparse, it may be expanded in the future. Subclasses should implement a parse
method, and may also want to implement an __init__ method with arguments that control how the parser works
(for instance, passing a starting path for the parser)

The parse method is where most of the work is done. It takes two arguments – the transaction and the portion
of the URL that is still to be parsed. The transaction may (and usually is) modified along the way. The URL is
passed through so that you can take pieces off the front, and then pass the reduced URL to another parser. The
method should return a servlet (never None).

If you cannot find a servlet, or some other (somewhat) expected error occurs, you should raise an exception.
HTTPNotFound probably being the most interesting.

findServletForTransaction(trans)
Returns a servlet for the transaction.

This is the top-level entry point, below it parse is used.

URLParser.application()

Returns the global Application.

URLParser.initApp(app)
Initialize the application.

Installs the proper servlet factories, and gets some settings from Application.config. Also saves the application
in _globalApplication for future calls to the application() function.

This needs to be called before any of the URLParser-derived classes are instantiated.

URLParser.initParser(app)
Initialize the FileParser Class.

19.1.33 WSGIStreamOut

This module defines a class for writing responses using WSGI.

exception WSGIStreamOut.InvalidCommandSequence

Bases: ConnectionError

Invalid command sequence error

__init__(*args, **kwargs)

args

characters_written

errno

POSIX exception code

filename

exception filename

filename2

second exception filename

186 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

strerror

exception strerror

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class WSGIStreamOut.WSGIStreamOut(startResponse, autoCommit=False, bufferSize=8192, useWrite=True,
encoding='utf-8')

Bases: object

This is a response stream to the client using WSGI.

The key attributes of this class are:

_startResponse:
The start_response() function that is part of the WSGI protocol.

_autoCommit:
If True, the stream will automatically start sending data once it has accumulated _bufferSize data. This
means that it will ask the response to commit itself, without developer interaction. By default, this is set to
False.

_bufferSize:
The size of the data buffer. This is only used when autocommit is True. If not using autocommit, the whole
response is buffered and sent in one shot when the servlet is done.

_useWrite:
Whether the write callable that is returned by start_response() shall be used to deliver the response.

flush():
Send the accumulated response data now. Will ask the Response to commit if it hasn’t already done so.

__init__(startResponse, autoCommit=False, bufferSize=8192, useWrite=True, encoding='utf-8')

autoCommit()

Get the auto commit mode.

buffer()

Return accumulated data which has not yet been flushed.

We want to be able to get at this data without having to call flush() first, so that we can (for example)
integrate automatic HTML validation.

bufferSize()

Get the buffer size.

clear()

Try to clear any accumulated response data.

Will fail if the response is already committed.

close()

Close this buffer. No more data may be sent.

closed()

Check whether we are closed to new data.

commit(autoCommit=True)
Called by the Response to tell us to go.

If _autoCommit is True, then we will be placed into autoCommit mode.

19.1. Core Classes 187



Webware for Python 3, Release 3.0.9

committed()

Check whether the outptu is already committed

flush()

Flush stream.

iterable()

Return the WSGI iterable.

needCommit()

Request for commitment.

Called by the HTTPResponse instance that is using this instance to ask if the response needs to be prepared
to be delivered. The response should then commit its headers, etc.

pop(count)
Remove count bytes from the front of the buffer.

prepend(output)
Add the output to the front of the response buffer.

The output may be a byte string or anything that can be converted to a string and encoded to a byte string
using the output encoding.

Invalid if we are already committed.

setAutoCommit(autoCommit=True)
Set the auto commit mode.

setBufferSize(bufferSize=8192)
Set the buffer size.

size()

Return the current size of the data held here.

startResponse(status, headers)
Start the response with the given status and headers.

write(output)
Write output to the buffer.

The output may be a byte string or anything that can be converted to a string and encoded to a byte string
using the output encoding.

19.1.34 XMLRPCServlet

XML-RPC servlet base class

Written by Geoffrey Talvola

See Examples/XMLRPCExample.py for sample usage.

class XMLRPCServlet.XMLRPCServlet

Bases: RPCServlet

XMLRPCServlet is a base class for XML-RPC servlets.

See Examples/XMLRPCExample.py for sample usage.

For more Pythonic convenience at the cost of language independence, see PickleRPCServlet.

188 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

__init__()

Subclasses must invoke super.

allow_none = True

awake(transaction)
Begin transaction.

call(methodName, *args, **keywords)
Call custom method.

Subclasses may override this class for custom handling of methods.

canBeReused()

Returns whether a single servlet instance can be reused.

The default is True, but subclasses con override to return False. Keep in mind that performance may
seriously be degraded if instances can’t be reused. Also, there’s no known good reasons not to reuse an
instance. Remember the awake() and sleep() methods are invoked for every transaction. But just in case,
your servlet can refuse to be reused.

canBeThreaded()

Return whether the servlet can be multithreaded.

This value should not change during the lifetime of the object. The default implementation returns False.
Note: This is not currently used.

close()

exposedMethods()

Get exposed methods.

Subclasses should return a list of methods that will be exposed through XML-RPC.

static handleException(transaction)
Handle exception.

If ReportRPCExceptionsInWebware is set to True, then flush the response (because we don’t want the
standard HTML traceback to be appended to the response) and then handle the exception in the standard
Webware way. This means logging it to the console, storing it in the error log, sending error email, etc.
depending on the settings.

lastModified(_trans)
Get time of last modification.

Return this object’s Last-Modified time (as a float), or None (meaning don’t know or not applicable).

log(message)
Log a message.

This can be invoked to print messages concerning the servlet. This is often used by self to relay important
information back to developers.

name()

Return the name which is simple the name of the class.

Subclasses should not override this method. It is used for logging and debugging.

static notImplemented(trans)

19.1. Core Classes 189



Webware for Python 3, Release 3.0.9

open()

respond(transaction)
Respond to a request.

Invokes the appropriate respondToSomething() method depending on the type of request (e.g., GET, POST,
PUT, . . . ).

respondToHead(trans)
Respond to a HEAD request.

A correct but inefficient implementation.

respondToPost(transaction)
Respond to a Post request.

This is similar to the xmlrpcserver.py example from the xmlrpc library distribution, only it’s been adapted
to work within a Webware servlet.

resultForException(e, trans)
Get text for exception.

Given an unhandled exception, returns the string that should be sent back in the RPC response as controlled
by the RPCExceptionReturn setting.

runMethodForTransaction(transaction, method, *args, **kw)

static runTransaction(transaction)

static sendOK(contentType, contents, trans, contentEncoding=None)
Send a 200 OK response with the given contents.

serverSidePath(path=None)
Return the filesystem path of the page on the server.

setFactory(factory)

sleep(transaction)
End transaction.

transaction()

Get the corresponding transaction.

Most uses of RPC will not need this.

19.2 PSP

19.2.1 BraceConverter

BraceConverter.py

Contributed 2000-09-04 by Dave Wallace (dwallace@delanet.com)

Converts Brace-blocked Python into normal indented Python. Brace-blocked Python is non-indentation aware and
blocks are delimited by ‘:{’ and ‘}’ pairs.

Thus:

190 Chapter 19. API Reference

mailto:dwallace@delanet.com


Webware for Python 3, Release 3.0.9

for x in range(10) :{
if x % 2 :{ print(x) } else :{ print(z) }

}

Becomes (roughly, barring some spurious whitespace):

for x in range(10):
if x % 2:

print(x)
else:

print(z)

This implementation is fed a line at a time via parseLine(), outputs to a PSPServletWriter, and tracks the current
quotation and block levels internally.

class PSP.BraceConverter.BraceConverter

Bases: object

__init__()

closeBrace(writer)
Close brace encountered.

handleQuote(quote, writer)
Check and handle if current pos is a single or triple quote.

openBlock(writer)
Open a new block.

openBrace(writer)
Open brace encountered.

parseLine(line, writer)
Parse a line.

The only public method of this class, call with subsequent lines and an instance of PSPServletWriter.

skipQuote(writer)
Skip to end of quote.

Skip over all chars until the line is exhausted or the current non-escaped quote sequence is encountered.

19.2.2 Context

Utility class for keeping track of the context.

A utility class that holds information about the file we are parsing and the environment we are doing it in.

Copyright (c) by Jay Love, 2000 (mailto:jsliv@jslove.org)

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
or royalty is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation or portions thereof, including modifications, that
you make.

This software is based in part on work done by the Jakarta group.

19.2. PSP 191

mailto:jsliv@jslove.org


Webware for Python 3, Release 3.0.9

class PSP.Context.PSPCLContext(pspfile)
Bases: PSPContext

A context for command line compilation.

Currently used for both command line and PSPServletEngine compilation. This class provides all the information
necessary during the parsing and page generation steps of the PSP compilation process.

__init__(pspfile)

getBaseUri()

Return the base URI for the servlet.

getClassPath()

getFullClassName()

Return the class name including package prefixes.

Won’t use this for now.

getFullPspFileName()

Return the name of the PSP file including its file path.

getOutputDirectory()

Provide directory to dump PSP source file to.

I am probably doing this in reverse order at the moment. I should start with this and get the Python filename
from it.

getPspFileName()

Return the name of the PSP file from which we are generating.

getPythonFileEncoding()

Return the encoding of the file that we are generating.

getPythonFileName()

Return the filename that we are generating to.

getReader()

Return the PSPReader object assigned to this context.

getServletClassName()

Return the class name of the servlet being generated.

getServletWriter()

Return the ServletWriter object assigned to this context.

getWriter()

resolveRelativeURI(uri)
This is used mainly for including files.

It simply returns the location relative to the base context directory, ie Examples/. If the filename has a
leading /, it is assumed to be an absolute path.

setClassName(name)
Set the class name to create.

setPSPReader(reader)
Set the PSPReader for this context.

192 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

setPythonFileEncoding(encoding)
Set the encoding of the .py file to generate.

setPythonFileName(name)
Set the name of the .py file to generate.

setServletWriter(writer)
Set the ServletWriter instance for this context.

class PSP.Context.PSPContext

Bases: object

PSPContext is an abstract base class for Context classes.

Holds all the common stuff that various parts of the compilation will need access to. The items in this class will
be used by both the compiler and the class generator.

getClassPath()

getFullClassName()

Return the class name including package prefixes.

Won’t use this for now.

getOutputDirectory()

Provide directory to dump PSP source file to.

getPythonFileEncoding()

Return the encoding of the file that we are generating.

getPythonFileName()

Return the filename that we are generating to.

getReader()

getServletClassName()

Return the class name of the servlet being generated.

getWriter()

setPSPReader(reader)
Set the PSPReader for this context.

setPythonFileEncoding(encoding)
Set the encoding of the .py file to generate.

setPythonFileName(name)
Set the name of the .py file to generate.

setServletWriter(writer)
Set the PSPWriter instance for this context.

19.2. PSP 193



Webware for Python 3, Release 3.0.9

19.2.3 Generators

Generate Python code from PSP templates.

This module holds the classes that generate the Python code resulting from the PSP template file. As the parser en-
counters PSP elements, it creates a new Generator object for that type of element. Each of these elements is put into
a list maintained by the ParseEventHandler object. When it comes time to output the source code, each generator is
called in turn to create its source.

Copyright (c) by Jay Love, 2000 (mailto:jsliv@jslove.org)

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
or royalty is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation or portions thereof, including modifications, that
you make.

This software is based in part on work done by the Jakarta group.

class PSP.Generators.CharDataGenerator(chars)
Bases: GenericGenerator

This class handles standard character output, mostly HTML.

It just dumps it out. Need to handle all the escaping of characters. It’s just skipped for now.

__init__(chars)

generate(writer, phase=None)

generateChunk(writer, start=0, stop=None)

mergeData(cdGen)

class PSP.Generators.EndBlockGenerator

Bases: GenericGenerator

__init__()

generate(writer, phase=None)

class PSP.Generators.ExpressionGenerator(chars)
Bases: GenericGenerator

This class handles expression blocks.

It simply outputs the (hopefully) python expression within the block wrapped with a _formatter() call.

__init__(chars)

generate(writer, phase=None)

class PSP.Generators.GenericGenerator(ctxt=None)
Bases: object

Base class for all the generators

__init__(ctxt=None)

194 Chapter 19. API Reference

mailto:jsliv@jslove.org


Webware for Python 3, Release 3.0.9

class PSP.Generators.IncludeGenerator(attrs, param, ctxt)
Bases: GenericGenerator

Handle psp:include directives.

This is a new version of this directive that actually forwards the request to the specified page.

__init__(attrs, param, ctxt)

generate(writer, phase=None)
Just insert theFunction.

class PSP.Generators.InsertGenerator(attrs, param, ctxt)
Bases: GenericGenerator

Include files designated by the psp:insert syntax.

If the attribute ‘static’ is set to True or 1, we include the file now, at compile time. Otherwise, we use a function
added to every PSP page named __includeFile, which reads the file at run time.

__init__(attrs, param, ctxt)

generate(writer, phase=None)

class PSP.Generators.MethodEndGenerator(chars, attrs)
Bases: GenericGenerator

Part of class method generation.

After MethodGenerator, MethodEndGenerator actually generates the code for the method body.

__init__(chars, attrs)

generate(writer, phase=None)

class PSP.Generators.MethodGenerator(chars, attrs)
Bases: GenericGenerator

Generate class methods defined in the PSP page.

There are two parts to method generation. This class handles getting the method name and parameters set up.

__init__(chars, attrs)

generate(writer, phase=None)

class PSP.Generators.ScriptClassGenerator(chars, attrs)
Bases: GenericGenerator

Add Python code at the class level.

__init__(chars, attrs)

generate(writer, phase=None)

class PSP.Generators.ScriptFileGenerator(chars, attrs)
Bases: GenericGenerator

Add Python code at the file/module level.

__init__(chars, attrs)

19.2. PSP 195



Webware for Python 3, Release 3.0.9

generate(writer, phase=None)

class PSP.Generators.ScriptGenerator(chars, attrs)
Bases: GenericGenerator

Generate scripts.

__init__(chars, attrs)

generate(writer, phase=None)

19.2.4 ParseEventHandler

Event handler for parsing PSP tokens.

This module is called when the Parser encounters psp tokens. It creates a generator to handle the PSP token. When the
PSP source file is fully parsed, this module calls all of the generators in turn to output their source code.

Copyright (c) by Jay Love, 2000 (mailto:jsliv@jslove.org)

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
or royalty is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation or portions thereof, including modifications, that
you make.

This software is based in part on work done by the Jakarta group.

class PSP.ParseEventHandler.ParseEventHandler(ctxt, parser)
Bases: object

This is a key class.

It implements the handling of all the parsing elements. Note: This files JSP cousin is called ParseEventListener,
I don’t know why, but Handler seemed more appropriate to me.

__init__(ctxt, parser)

addGenerator(gen)

aspace = ' '

beginProcessing()

defaults = {'BASE_CLASS': 'Page', 'BASE_METHOD': 'writeHTML', 'formatter': 'str',
'gobbleWhitespace': True, 'imports': {'filename': 'classes'}, 'indent': 4,
'instanceSafe': 'yes', 'threadSafe': 'no'}

directiveHandlers = {'BaseClass': <function ParseEventHandler.extendsHandler>,
'extends': <function ParseEventHandler.extendsHandler>, 'formatter': <function
ParseEventHandler.formatterHandler>, 'gobbleWhitespace': <function
ParseEventHandler.gobbleWhitespaceHandler>, 'import': <function
ParseEventHandler.importHandler>, 'imports': <function
ParseEventHandler.importHandler>, 'indentSpaces': <function
ParseEventHandler.indentSpacesHandler>, 'indentType': <function
ParseEventHandler.indentTypeHandler>, 'isInstanceSafe': <function
ParseEventHandler.instanceSafeHandler>, 'isThreadSafe': <function
ParseEventHandler.threadSafeHandler>, 'method': <function
ParseEventHandler.mainMethodHandler>}

196 Chapter 19. API Reference

mailto:jsliv@jslove.org


Webware for Python 3, Release 3.0.9

endProcessing()

extendsHandler(bases, start, stop)
Extends is a page directive.

It sets the base class (or multiple base classes) for the class that this class will generate. The choice of base
class affects the choice of a method to override with the BaseMethod page directive. The default base class
is PSPPage. PSPPage inherits from Page.py.

formatterHandler(value, start, stop)
Set an alternate formatter function to use instead of str().

generateAll(phase)

generateDeclarations()

generateFooter()

generateHeader()

generateInitPSP()

generateMainMethod()

gobbleWhitespace()

Gobble up whitespace.

This method looks for a character block between two PSP blocks that contains only whitespace. If it finds
one, it deletes it.

This is necessary so that a write() line can’t sneek in between a if/else, try/except etc.

gobbleWhitespaceHandler(value, start, stop)
Declare whether whitespace between script tags are gobble up.

handleCharData(start, stop, chars)
Flush character data into a CharDataGenerator.

handleComment(start, stop)
Comments get swallowed into nothing.

handleDirective(directive, start, stop, attrs)
Flush any template data and create a new DirectiveGenerator.

handleEndBlock()

handleExpression(start, stop, attrs)
Flush any template data and create a new ExpressionGenerator.

handleInclude(attrs, param)

This is for includes of the form <psp:include . . .>

This function essentially forwards the request to the specified URL and includes that output.

handleInsert(attrs, param)

This is for includes of the form <psp:insert . . . >

This type of include is not parsed, it is just inserted into the output stream.

handleMethod(start, stop, attrs)

19.2. PSP 197



Webware for Python 3, Release 3.0.9

handleMethodEnd(start, stop, attrs)

handleScript(start, stop, attrs)
Handle scripting elements

handleScriptClass(start, stop, attrs)
Python script that goes at the class level

handleScriptFile(start, stop, attrs)
Python script that goes at the file/module level

importHandler(imports, start, stop)

indentSpacesHandler(amount, start, stop)
Set number of spaces used to indent in generated source.

indentTypeHandler(indentType, start, stop)
Declare whether tabs are used to indent source code.

instanceSafeHandler(value, start, stop)
Handle isInstanceSafe.

isInstanceSafe tells the Servlet engine whether it is safe to use object instances of this page multiple times.
The default is “yes”.

Saying “no” here hurts performance.

mainMethodHandler(method, start, stop)
BaseMethod is a page directive.

It sets the class method that the main body of this PSP page over-rides. The default is WriteHTML. This
value should be set to either WriteHTML or writeBody. See the PSPPage.py and Page.py servlet classes
for more information.

optimizeCharData()

Optimize the CharData.

Too many char data generators make the servlet slow. If the current Generator and the next are both Char-
Data type, merge their data.

setTemplateInfo(start, stop)
Mark non code data.

threadSafeHandler(value, start, stop)
Handle isThreadSage.

isThreadSafe is a page directive. The value can be “yes” or “no”. Default is no because the default base
class, Page.py, isn’t thread safe.

PSP.ParseEventHandler.checkForTextHavingOnlyGivenChars(text, whitespace=None)
Checks whether text contains only whitespace (or other chars).

Does the given text contain anything other than the whitespace characters? Return true if text is only whitespace
characters.

198 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

19.2.5 PSPCompiler

A simple little module that organizes the actual page generation.

Copyright (c) by Jay Love, 2000 (mailto:jsliv@jslove.org)

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
or royalty is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation or portions thereof, including modifications, that
you make.

This software is based in part on work done by the Jakarta group.

class PSP.PSPCompiler.Compiler(context)
Bases: object

The main compilation class.

__init__(context)

compile()

Compile the PSP context and return a set of all source files.

19.2.6 PSPPage

Default base class for PSP pages.

This class is intended to be used in the future as the default base class for PSP pages in the event that some special
processing is needed. Right now, no special processing is needed, so the default base class for PSP pages is the standard
Webware Page.

class PSP.PSPPage.PSPPage

Bases: Page

__init__()

Subclasses must invoke super.

actions()

The allowed actions.

Returns a list or a set of method names that are allowable actions from HTML forms. The default imple-
mentation returns []. See _respond for more about actions.

application()

The Application instance we’re using.

awake(transaction)
Let servlet awake.

Makes instance variables from the transaction. This is where Page becomes unthreadsafe, as the page is
tied to the transaction. This is also what allows us to implement functions like write, where you don’t need
to pass in the transaction or response.

callMethodOfServlet(url, method, *args, **kwargs)
Call a method of another servlet.

See Application.callMethodOfServlet for details. The main difference is that here you don’t have to pass in
the transaction as the first argument.

19.2. PSP 199

mailto:jsliv@jslove.org


Webware for Python 3, Release 3.0.9

canBeReused()

Returns whether a single servlet instance can be reused.

The default is True, but subclasses con override to return False. Keep in mind that performance may
seriously be degraded if instances can’t be reused. Also, there’s no known good reasons not to reuse an
instance. Remember the awake() and sleep() methods are invoked for every transaction. But just in case,
your servlet can refuse to be reused.

canBeThreaded()

Declares whether servlet can be threaded.

Returns False because of the instance variables we set up in awake.

close()

defaultAction()

The default action in a Page is to writeHTML().

static endResponse()

End response.

When this method is called during awake or respond, servlet processing will end immediately, and the
accumulated response will be sent.

Note that sleep will still be called, providing a chance to clean up or free any resources.

forward(url)
Forward request.

Forwards this request to another servlet. See Application.forward for details. The main difference is that
here you don’t have to pass in the transaction as the first argument.

handleAction(action)
Handle action.

Invoked by _respond when a legitimate action has been found in a form. Invokes preAction, the actual
action method and postAction.

Subclasses rarely override this method.

htBodyArgs()

The attributes for the <body> element.

Returns the arguments used for the HTML <body> tag. Invoked by writeBody().

With the prevalence of stylesheets (CSS), you can probably skip this particular HTML feature, but for
historical reasons this sets the page to black text on white.

htRootArgs()

The attributes for the <html> element.

Returns the arguments used for the root HTML tag. Invoked by writeHTML() and preAction().

Authors are encouraged to specify a lang attribute, giving the document’s language.

htTitle()

The page title as HTML.

Return self.title(). Subclasses sometimes override this to provide an HTML enhanced version of the title.
This is the method that should be used when including the page title in the actual page contents.

200 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

static htmlDecode(s)
HTML decode special characters.

Alias for WebUtils.Funcs.htmlDecode. Decodes HTML entities.

static htmlEncode(s)
HTML encode special characters. Alias for WebUtils.Funcs.htmlEncode, quotes the special characters
&, <, >, and “

includeURL(url)
Include output from other servlet.

Includes the response of another servlet in the current servlet’s response. See Application.includeURL for
details. The main difference is that here you don’t have to pass in the transaction as the first argument.

lastModified(_trans)
Get time of last modification.

Return this object’s Last-Modified time (as a float), or None (meaning don’t know or not applicable).

log(message)
Log a message.

This can be invoked to print messages concerning the servlet. This is often used by self to relay important
information back to developers.

methodNameForAction(name)
Return method name for an action name.

Invoked by _respond() to determine the method name for a given action name which has been derived as
the value of an _action_ field. Since this is usually the label of an HTML submit button in a form, it is
often needed to transform it in order to get a valid method name (for instance, blanks could be replaced by
underscores and the like). This default implementation of the name transformation is the identity, it simply
returns the name. Subclasses should override this method when action names don’t match their method
names; they could “mangle” the action names or look the method names up in a dictionary.

name()

Return the name which is simple the name of the class.

Subclasses should not override this method. It is used for logging and debugging.

static notImplemented(trans)

open()

outputEncoding()

Get the default output encoding of the application.

postAction(actionName)
Things to do after actions.

Simply close the html tag (</html>).

preAction(actionName)
Things to do before actions.

For a page, we first writeDocType(), <html>, and then writeHead().

request()

The request (HTTPRequest) we’re handling.

19.2. PSP 201



Webware for Python 3, Release 3.0.9

respond(transaction)
Respond to a request.

Invokes the appropriate respondToSomething() method depending on the type of request (e.g., GET, POST,
PUT, . . . ).

respondToGet(transaction)
Respond to GET.

Invoked in response to a GET request method. All methods are passed to _respond.

respondToHead(trans)
Respond to a HEAD request.

A correct but inefficient implementation.

respondToPost(transaction)
Respond to POST.

Invoked in response to a POST request method. All methods are passed to _respond.

response()

The response (HTTPResponse) we’re handling.

runMethodForTransaction(transaction, method, *args, **kw)

static runTransaction(transaction)

sendRedirectAndEnd(url, status=None)
Send redirect and end.

Sends a redirect back to the client and ends the response. This is a very popular pattern.

sendRedirectPermanentAndEnd(url)
Send permanent redirect and end.

sendRedirectSeeOtherAndEnd(url)
Send redirect to a URL to be retrieved with GET and end.

This is the proper method for the Post/Redirect/Get pattern.

sendRedirectTemporaryAndEnd(url)
Send temporary redirect and end.

serverSidePath(path=None)
Return the filesystem path of the page on the server.

session()

The session object.

This provides a state for the current user (associated with a browser instance, really). If no session exists,
then a session will be created.

sessionEncode(url=None)
Utility function to access Session.sessionEncode.

Takes a url and adds the session ID as a parameter. This is for cases where you don’t know if the client will
accepts cookies.

setFactory(factory)

202 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

sleep(transaction)
Let servlet sleep again.

We unset some variables. Very boring.

title()

The page title.

Subclasses often override this method to provide a custom title. This title should be absent of HTML tags.
This implementation returns the name of the class, which is sometimes appropriate and at least informative.

transaction()

The Transaction we’re currently handling.

static urlDecode(s)
Turn special % characters into actual characters.

This method does the same as the urllib.unquote_plus() function.

static urlEncode(s)
Quotes special characters using the % substitutions.

This method does the same as the urllib.quote_plus() function.

write(*args)
Write to output.

Writes the arguments, which are turned to strings (with str) and concatenated before being written to the
response. Unicode strings must be encoded before they can be written.

writeBody()

Write the <body> element of the page.

Writes the <body> portion of the page by writing the <body>...</body> (making use of htBodyArgs)
and invoking writeBodyParts in between.

writeBodyParts()

Write the parts included in the <body> element.

Invokes writeContent. Subclasses should only override this method to provide additional page parts such
as a header, sidebar and footer, that a subclass doesn’t normally have to worry about writing.

For writing page-specific content, subclasses should override writeContent instead. This method is in-
tended to be overridden by your SitePage.

See SidebarPage for an example override of this method.

Invoked by writeBody.

writeContent()

Write the unique, central content for the page.

Subclasses should override this method (not invoking super) to write their unique page content.

Invoked by writeBodyParts.

writeDocType()

Write the DOCTYPE tag.

Invoked by writeHTML to write the <!DOCTYPE ...> tag.

By default this gives the HTML 5 DOCTYPE.

Subclasses may override to specify something else.

19.2. PSP 203



Webware for Python 3, Release 3.0.9

writeExceptionReport(handler)
Write extra information to the exception report.

The handler argument is the exception handler, and information is written there (using writeTitle, write,
and writeln). This information is added to the exception report.

See ExceptionHandler for more information.

writeHTML()

Write all the HTML for the page.

Subclasses may override this method (which is invoked by _respond) or more commonly its constituent
methods, writeDocType, writeHead and writeBody.

You will want to override this method if:

• you want to format the entire HTML page yourself

• if you want to send an HTML page that has already been generated

• if you want to use a template that generates the entire page

• if you want to send non-HTML content; in this case, be sure to call
self.response().setHeader(‘Content-Type’, ‘mime/type’).

writeHead()

Write the <head> element of the page.

Writes the <head> portion of the page by writing the <head>...</head> tags and invoking
writeHeadParts in between.

writeHeadParts()

Write the parts included in the <head> element.

Writes the parts inside the <head>...</head> tags. Invokes writeTitle and then writeMetaData,
writeStyleSheet and writeJavaScript. Subclasses should override the title method and the three
latter methods only.

writeJavaScript()

Write the JavaScript for the page.

This default implementation does nothing. Subclasses should override if necessary.

A typical implementation is:

self.writeln('<script src="ajax.js"></script>')

writeMetaData()

Write the meta data for the page.

This default implementation only specifies the output encoding. Subclasses should override if necessary.

writeStyleSheet()

Write the CSS for the page.

This default implementation does nothing. Subclasses should override if necessary.

A typical implementation is:

self.writeln('<link rel="stylesheet" href="StyleSheet.css">')

204 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

writeTitle()

Write the <title> element of the page.

Writes the <title> portion of the page. Uses title, which is where you should override.

writeln(*args)
Write to output with newline.

Writes the arguments (like write), adding a newline after. Unicode strings must be encoded before they can
be written.

19.2.7 PSPParser

The PSP parser.

This module handles the actual reading of the characters in the source PSP file and checking it for valid psp tokens.
When it finds one, it calls ParseEventHandler with the characters it found.

Copyright (c) by Jay Love, 2000 (mailto:jsliv@jslove.org)

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
or royalty is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation or portions thereof, including modifications, that
you make.

This software is based in part on work done by the Jakarta group.

class PSP.PSPParser.PSPParser(ctxt)
Bases: object

The main PSP parser class.

The PSPParser class does the actual sniffing through the input file looking for anything we’re interested in. Basi-
cally, it starts by looking at the code looking for a ‘<’ symbol. It looks at the code by working with a PSPReader
object, which handles the current location in the code. When it finds one, it calls a list of checker methods, asking
each if it recognizes the characters as its kind of input. When the checker methods look at the characters, if they
want it, they go ahead and gobble it up and set up to create it in the servlet when the time comes. When they
return, they return true if they accept the character, and the PSPReader object cursor is positioned past the end
of the block that the checker method accepted.

__init__(ctxt)

checkDirective(handler, reader)
Check for directives; for now we support only page and include.

checkEndBlock(handler, reader)
Check for the end of a block.

checkExpression(handler, reader)
Look for “expressions” and handle them.

checkInclude(handler, reader)
Check for inserting another pages output in this spot.

checkInsert(handler, reader)
Check for straight character dumps.

No big hurry for this. It’s almost the same as the page include directive. This is only a partial implementation
of what JSP does. JSP can pull it from another server, servlet, JSP page, etc.

19.2. PSP 205

mailto:jsliv@jslove.org


Webware for Python 3, Release 3.0.9

checkMethod(handler, reader)
Check for class methods defined in the page.

We only support one format for these, <psp:method name="xxx" params="xxx,xxx"> Then the func-
tion body, then </psp:method>.

checkScript(handler, reader)
The main thing we’re after. Check for embedded scripts.

checkScriptClass(handler, reader)
Check for class level code.

Check for Python code that should go in the class definition:

<psp:class>
def foo(self):

return self.dosomething()
</psp:class>

checkScriptFile(handler, reader)
Check for file level code.

Check for Python code that must go to the top of the generated module:

<psp:file>
import xyz
print('hi Mome!')
def foo(): return 'foo'

</psp:file>

checklist = [<function PSPParser.commentCheck>, <function
PSPParser.checkExpression>, <function PSPParser.checkDirective>, <function
PSPParser.checkEndBlock>, <function PSPParser.checkScript>, <function
PSPParser.checkScriptFile>, <function PSPParser.checkScriptClass>, <function
PSPParser.checkMethod>, <function PSPParser.checkInclude>, <function
PSPParser.checkInsert>]

commentCheck(_handler, reader)
Comments just get eaten.

flushCharData(start, stop)
Dump everything to the char data handler.

Dump all the HTML that we’ve accumulated over to the character data handler in the event handler object.

parse(until=None)
Parse the PSP file.

setEventHandler(handler)
Set the handler this parser will use when it finds PSP code.

PSP.PSPParser.checker(method)
Decorator for adding a method to the checklist.

206 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

19.2.8 PSPServletFactory

This module handles requests from the application for PSP pages.

Copyright (c) by Jay Love, 2000 (mailto:jsliv@jslove.org)

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
or royalty is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation or portions thereof, including modifications, that
you make.

class PSP.PSPServletFactory.PSPServletFactory(application)
Bases: ServletFactory

Servlet Factory for PSP files.

__init__(application)
Create servlet factory.

Stores a reference to the application in self._app, because subclasses may or may not need to talk back to
the application to do their work.

clearFileCache()

Clear class files stored on disk.

computeClassName(pageName)
Generates a (hopefully) unique class/file name for each PSP file.

Argument: pageName: the path to the PSP source file Returns: a unique name for the class generated fom
this PSP source file

extensions()

Return a list of extensions that match this handler.

Extensions should include the dot. An empty string indicates a file with no extension and is a valid value.
The extension ‘.*’ is a special case that is looked for a URL’s extension doesn’t match anything.

fileEncoding()

Return the file encoding used in PSP files.

flushCache()

Clean out the cache of classes in memory and on disk.

importAsPackage(transaction, serverSidePathToImport)
Import requested module.

Imports the module at the given path in the proper package/subpackage for the current request. For example,
if the transaction has the URL http://localhost/Webware/MyContextDirectory/MySubdirectory/MyPage
and path = ‘some/random/path/MyModule.py’ and the context is configured to have the name ‘MyCon-
text’ then this function imports the module at that path as MyContext.MySubdirectory.MyModule . Note
that the context name may differ from the name of the directory containing the context, even though they
are usually the same by convention.

Note that the module imported may have a different name from the servlet name specified in the URL. This
is used in PSP.

loadClass(transaction, path)
Load the appropriate class.

Given a transaction and a path, load the class for creating these servlets. Caching, pooling, and threadsafe-
ness are all handled by servletForTransaction. This method is not expected to be threadsafe.

19.2. PSP 207

mailto:jsliv@jslove.org
http://localhost/Webware/MyContextDirectory/MySubdirectory/MyPage


Webware for Python 3, Release 3.0.9

loadClassFromFile(transaction, fileName, className)
Create an actual class instance.

The module containing the class is imported as though it were a module within the context’s package (and
appropriate subpackages).

name()

Return the name of the factory.

This is a convenience for the class name.

returnServlet(servlet)
Return servlet to the pool.

Called by Servlet.close(), which returns the servlet to the servlet pool if necessary.

servletForTransaction(transaction)
Return a new servlet that will handle the transaction.

This method handles caching, and will call loadClass(trans, filepath) if no cache is found. Caching is
generally controlled by servlets with the canBeReused() and canBeThreaded() methods.

uniqueness()

Return uniqueness type.

Returns a string to indicate the uniqueness of the ServletFactory’s servlets. The Application needs to know
if the servlets are unique per file, per extension or per application.

Return values are ‘file’, ‘extension’ and ‘application’.

NOTE: Application so far only supports ‘file’ uniqueness.

19.2.9 PSPUtils

A bunch of utility functions for the PSP generator.

Copyright (c) by Jay Love, 2000 (mailto:jsliv@jslove.org)

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
or royalty is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation or portions thereof, including modifications, that
you make.

This software is based in part on work done by the Jakarta group.

exception PSP.PSPUtils.PSPParserException

Bases: Exception

PSP parser error.

__init__(*args, **kwargs)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

PSP.PSPUtils.checkAttributes(tagType, attrs, validAttrs)
Check for mandatory and optional atributes.

208 Chapter 19. API Reference

mailto:jsliv@jslove.org


Webware for Python 3, Release 3.0.9

PSP.PSPUtils.getExpr(s)
Get the content of a PSP expression.

PSP.PSPUtils.isExpression(s)
Check whether this is a PSP expression.

PSP.PSPUtils.normalizeIndentation(pySource)
Take code block that may be too indented and move it all to the left.

PSP.PSPUtils.removeQuotes(s)

PSP.PSPUtils.splitLines(text, keepends=False)
Split text into lines.

PSP.PSPUtils.startsNewBlock(line)
Determine whether a code line starts a new block.

19.2.10 ServletWriter

This module holds the actual file writer class.

Copyright (c) by Jay Love, 2000 (mailto:jsliv@jslove.org)

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
or royalty is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation or portions thereof, including modifications, that
you make.

This software is based in part on work done by the Jakarta group.

class PSP.ServletWriter.ServletWriter(ctxt)
Bases: object

This file creates the servlet source code.

Well, it writes it out to a file at least.

__init__(ctxt)

close()

indent(s)
Indent the string.

popIndent()

printChars(s)
Just prints what its given.

printComment(start, stop, chars)

printIndent()

Just prints tabs.

printList(strList)
Prints a list of strings with indentation and a newline.

printMultiLn(s)

19.2. PSP 209

mailto:jsliv@jslove.org


Webware for Python 3, Release 3.0.9

println(line=None)
Print with indentation and a newline if none supplied.

pushIndent()

this is very key, have to think more about it

quoteString(s)
Escape the string.

setIndentSpaces(amt)

setIndentType(indentType)

setIndention()

19.2.11 StreamReader

This module co-ordinates the reading of the source file.

It maintains the current position of the parser in the source file.

Copyright (c) by Jay Love, 2000 (mailto:jsliv@jslove.org)

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
or royalty is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation or portions thereof, including modifications, that
you make.

This software is based in part on work done by the Jakarta group.

class PSP.StreamReader.Mark(reader, fileId=None, stream=None, inBaseDir=None, encoding=None)
Bases: object

This class marks a point in an input stream.

__init__(reader, fileId=None, stream=None, inBaseDir=None, encoding=None)

getFile()

popStream()

pushStream(inFileId, inStream, inBaseDir, inEncoding)

class PSP.StreamReader.StreamReader(filename, ctxt)
Bases: object

This class handles the PSP source file.

It provides the characters to the other parts of the system. It can move forward and backwards in a file and
remember locations.

__init__(filename, ctxt)

advance(length)
Advance length characters

getChars(start, stop)

getFile(i)

210 Chapter 19. API Reference

mailto:jsliv@jslove.org


Webware for Python 3, Release 3.0.9

hasMoreInput()

init()

isDelimiter()

isSpace()

No advancing.

mark()

matches(s)

newSourceFile(filename)

nextChar()

nextContent()

Find next < char.

parseAttributeValue(valueDict)

parseTagAttributes()

Parse the attributes at the beginning of a tag.

parseToken(quoted)

peekChar(cnt=1)

popFile()

pushFile(filepath, encoding=None)

registerSourceFile(filepath)

reset(mark)

skipSpaces()

skipUntil(s)
Greedy search.

Return the point before the string, but move reader past it.

19.3 UserKit

19.3.1 HierRole

The HierRole class.

class UserKit.HierRole.HierRole(name, description=None, superRoles=None)
Bases: Role

HierRole is a hierarchical role.

It points to its parent roles. The hierarchy cannot have cycles.

__init__(name, description=None, superRoles=None)

19.3. UserKit 211



Webware for Python 3, Release 3.0.9

description()

name()

playsRole(role)
Check whether the receiving role plays the role that is passed in.

This implementation provides for the inheritance supported by HierRole.

setDescription(description)

setName(name)

19.3.2 Role

The basic Role class.

class UserKit.Role.Role(name, description=None)
Bases: object

Used in conjunction with RoleUser to provide role-based security.

All roles have a name and a description and respond to playsRole().

RoleUser also responds to playsRole() and is the more popular entry point for programmers. Application code
may then do something along the lines of:

if user.playsRole(‘admin’):
self.displayAdminMenuItems()

See also:

• class HierRole

• class RoleUser

__init__(name, description=None)

description()

name()

playsRole(role)
Return true if the receiving role plays the role passed in.

For Role, this is simply a test of equality. Subclasses may override this method to provide richer semantics
(such as hierarchical roles).

setDescription(description)

setName(name)

212 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

19.3.3 RoleUser

The RoleUser class.

class UserKit.RoleUser.RoleUser(manager=None, name=None, password=None)
Bases: User

In conjunction with Role, provides role-based users and security.

See the doc for playsRole() for an example.

Note that this class plays nicely with both Role and HierRole, e.g., no “HierRoleUser” is needed when making
use of HierRoles.

See also:

• class Role

• class HierRole

__init__(manager=None, name=None, password=None)

addRoles(listOfRoles)
Add additional roles for the user.

Each role in the list may be a valid role name or a Role object.

creationTime()

externalId()

isActive()

lastAccessTime()

lastLoginTime()

login(password, fromMgr=0)
Return self if the login is successful and None otherwise.

logout(fromMgr=False)

manager()

name()

password()

playsRole(roleOrName)
Check whether the user plays the given role.

More specifically, if any of the user’s roles return true for role.playsRole(otherRole), this method returns
True.

The application of this popular method often looks like this:

if user.playsRole(‘admin’):
self.displayAdminMenuItems()

roles()

Return a direct list of the user’s roles.

Do not modify.

19.3. UserKit 213



Webware for Python 3, Release 3.0.9

serialNum()

setManager(manager)
Set the manager, which can only be done once.

setName(name)
Set the name, which can only be done once.

setPassword(password)

setRoles(listOfRoles)
Set all the roles for the user.

Each role in the list may be a valid role name or a Role object.

Implementation note: depends on addRoles().

setSerialNum(serialNum)

wasAccessed()

19.3.4 RoleUserManager

The RoleUserManager class.

class UserKit.RoleUserManager.RoleUserManager(userClass=None)
Bases: UserManager, RoleUserManagerMixIn

See the base classes for more information.

__init__(userClass=None)

activeUserTimeout()

activeUsers()

Return a list of all active users.

addRole(role)

addUser(user)

cachedUserTimeout()

clearCache()

Clear the cache of the manager.

Use with extreme caution. If your program maintains a reference to a user object, but the manager loads in
a new copy later on, then consistency problems could occur.

The most popular use of this method is in the regression test suite.

clearRoles()

createUser(name, password, userClass=None)
Return a newly created user that is added to the manager.

If userClass is not specified, the manager’s default user class is instantiated. This not imply that the user is
logged in. This method invokes self.addUser().

See also: userClass(), setUserClass()

214 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

delRole(name)

hasRole(name)

inactiveUsers()

initUserClass()

Invoked by __init__ to set the default user class to RoleUser.

login(user, password)
Return the user if login is successful, otherwise return None.

loginExternalId(externalId, password)

loginName(userName, password)

loginSerialNum(serialNum, password)

logout(user)

modifiedUserTimeout()

numActiveUsers()

Return the number of active users (e.g. the logged in users).

role(name, default=<class 'MiscUtils.NoDefault'>)

roles()

setActiveUserTimeout(value)

setCachedUserTimeout(value)

setModifiedUserTimeout(value)

setUserClass(userClass)
Set the userClass, which cannot be None and must inherit from User.

See also: userClass().

shutDown()

Perform any tasks necessary to shut down the user manager.

Subclasses may override and must invoke super as their last step.

userClass()

Return the userClass, which is used by createUser.

The default value is UserKit.User.User.

userForExternalId(externalId, default=<class 'MiscUtils.NoDefault'>)
Return the user with the given external id.

The user record is pulled into memory if needed.

userForName(name, default=<class 'MiscUtils.NoDefault'>)
Return the user with the given name.

The user record is pulled into memory if needed.

19.3. UserKit 215



Webware for Python 3, Release 3.0.9

userForSerialNum(serialNum, default=<class 'MiscUtils.NoDefault'>)
Return the user with the given serialNum.

The user record is pulled into memory if needed.

users()

Return a list of all users (regardless of login status).

19.3.5 RoleUserManagerMixIn

The RoleUserManager mixin.

class UserKit.RoleUserManagerMixIn.RoleUserManagerMixIn

Bases: object

Mixin class for mapping names to roles.

This mixin adds the functionality of keeping a dictionary mapping names to role instances. Several accessor
methods are provided for this.

__init__()

addRole(role)

clearRoles()

delRole(name)

hasRole(name)

initUserClass()

Invoked by __init__ to set the default user class to RoleUser.

role(name, default=<class 'MiscUtils.NoDefault'>)

roles()

19.3.6 RoleUserManagerToFile

The RoleUserManagerToFile class.

class UserKit.RoleUserManagerToFile.RoleUserManagerToFile(userClass=None)
Bases: RoleUserManagerMixIn, UserManagerToFile

See the base classes for more information.

__init__(userClass=None)

activeUserTimeout()

activeUsers()

Return a list of all active users.

addRole(role)

addUser(user)

cachedUserTimeout()

216 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

clearCache()

Clear the cache of the manager.

Use with extreme caution. If your program maintains a reference to a user object, but the manager loads in
a new copy later on, then consistency problems could occur.

The most popular use of this method is in the regression test suite.

clearRoles()

createUser(name, password, userClass=None)
Return a newly created user that is added to the manager.

If userClass is not specified, the manager’s default user class is instantiated. This not imply that the user is
logged in. This method invokes self.addUser().

See also: userClass(), setUserClass()

decoder()

delRole(name)

encoder()

hasRole(name)

inactiveUsers()

initNextSerialNum()

initUserClass()

Invoked by __init__ to set the default user class to RoleUser.

loadUser(serialNum, default=<class 'MiscUtils.NoDefault'>)
Load the user with the given serial number from disk.

If there is no such user, a KeyError will be raised unless a default value was passed, in which case that value
is returned.

login(user, password)
Return the user if login is successful, otherwise return None.

loginExternalId(externalId, password)

loginName(userName, password)

loginSerialNum(serialNum, password)

logout(user)

modifiedUserTimeout()

nextSerialNum()

numActiveUsers()

Return the number of active users (e.g. the logged in users).

role(name, default=<class 'MiscUtils.NoDefault'>)

roles()

19.3. UserKit 217



Webware for Python 3, Release 3.0.9

scanSerialNums()

Return a list of all the serial numbers of users found on disk.

Serial numbers are always integers.

setActiveUserTimeout(value)

setCachedUserTimeout(value)

setEncoderDecoder(encoder, decoder)

setModifiedUserTimeout(value)

setUserClass(userClass)
Overridden to mix in UserMixIn to the class that is passed in.

setUserDir(userDir)
Set the directory where user information is stored.

You should strongly consider invoking initNextSerialNum() afterwards.

shutDown()

Perform any tasks necessary to shut down the user manager.

Subclasses may override and must invoke super as their last step.

userClass()

Return the userClass, which is used by createUser.

The default value is UserKit.User.User.

userDir()

userForExternalId(externalId, default=<class 'MiscUtils.NoDefault'>)
Return the user with the given external id.

The user record is pulled into memory if needed.

userForName(name, default=<class 'MiscUtils.NoDefault'>)
Return the user with the given name.

The user record is pulled into memory if needed.

userForSerialNum(serialNum, default=<class 'MiscUtils.NoDefault'>)
Return the user with the given serialNum.

The user record is pulled into memory if needed.

users()

Return a list of all users (regardless of login status).

218 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

19.3.7 User

The basic User class.

class UserKit.User.User(manager=None, name=None, password=None)
Bases: object

The base class for a UserKit User.

__init__(manager=None, name=None, password=None)

creationTime()

externalId()

isActive()

lastAccessTime()

lastLoginTime()

login(password, fromMgr=0)
Return self if the login is successful and None otherwise.

logout(fromMgr=False)

manager()

name()

password()

serialNum()

setManager(manager)
Set the manager, which can only be done once.

setName(name)
Set the name, which can only be done once.

setPassword(password)

setSerialNum(serialNum)

wasAccessed()

19.3.8 UserManager

The abstract UserManager class.

class UserKit.UserManager.UserManager(userClass=None)
Bases: object

The base class for all user manager classes.

A UserManager manages a set of users including authentication, indexing and persistence. Keep in mind that
UserManager is abstract; you must always use a concrete subclasses like UserManagerToFile (but please read
the rest of this docstring).

You can create a user through the manager (preferred):

19.3. UserKit 219



Webware for Python 3, Release 3.0.9

user = manager.createUser(name, password)

Or directly through the user class:

user = RoleUser(manager, name, password)
manager.addUser(user)

The manager tracks users by whether or not they are “active” (e.g., logged in) and indexes them by:

• user serial number

• external user id

• user name

These methods provide access to the users by these keys:

def userForSerialNum(self, serialNum, default=NoDefault)
def userForExternalId(self, extId, default=NoDefault)
def userForName(self, name, default=NoDefault)

UserManager provides convenient methods for iterating through the various users. Each method returns an object
that can be used in a for loop and asked for its len():

def users(self)
def activeUsers(self)
def inactiveUsers(self)

You can authenticate a user by passing the user object and attempted password to login(). If the authentication
is successful, then login() returns the User, otherwise it returns None:

user = mgr.userForExternalId(externalId)
if mgr.login(user, password):

self.doSomething()

As a convenience, you can authenticate by passing the serialNum, externalId or name of the user:

def loginSerialNum(self, serialNum, password):
def loginExternalId(self, externalId, password):
def loginName(self, userName, password):

The user will automatically log out after a period of inactivity (see below), or you can make it happen with:

def logout(self, user):

There are three user states that are important to the manager:

• modified

• cached

• authenticated or “active”

A modified user is one whose data has changed and eventually requires storage to a persistent location. A cached
user is a user whose data resides in memory (regardless of the other states). An active user has been authenticated
(e.g., their username and password were checked) and has not yet logged out or timed out.

The manager keeps three timeouts, expressed in minutes, to:

• save modified users after a period of time following the first unsaved modification

220 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

• push users out of memory after a period of inactivity

• deactivate (e.g., log out) users after a period of inactivity

The methods for managing these values deal with the timeouts as number-of-minutes. The default values and
the methods are:

• 20 modifiedUserTimeout() setModifiedUserTimeout()

• 20 cachedUserTimeout() setCachedUserTimeout()

• 20 activeUserTimeout() setActiveUserTimeout()

Subclasses of UserManager provide persistence such as to the file system or a MiddleKit store. Subclasses
must implement all methods that raise AbstractErrors. Subclasses typically override (while still invoking super)
addUser().

Subclasses should ensure “uniqueness” of users. For example, invoking any of the userForSomething() methods
repeatedly should always return the same user instance for a given key. Without uniqueness, consistency issues
could arise with users that are modified.

Please read the method docstrings and other class documentation to fully understand UserKit.

__init__(userClass=None)

activeUserTimeout()

activeUsers()

Return a list of all active users.

addUser(user)

cachedUserTimeout()

clearCache()

Clear the cache of the manager.

Use with extreme caution. If your program maintains a reference to a user object, but the manager loads in
a new copy later on, then consistency problems could occur.

The most popular use of this method is in the regression test suite.

createUser(name, password, userClass=None)
Return a newly created user that is added to the manager.

If userClass is not specified, the manager’s default user class is instantiated. This not imply that the user is
logged in. This method invokes self.addUser().

See also: userClass(), setUserClass()

inactiveUsers()

login(user, password)
Return the user if login is successful, otherwise return None.

loginExternalId(externalId, password)

loginName(userName, password)

loginSerialNum(serialNum, password)

logout(user)

19.3. UserKit 221



Webware for Python 3, Release 3.0.9

modifiedUserTimeout()

numActiveUsers()

Return the number of active users (e.g. the logged in users).

setActiveUserTimeout(value)

setCachedUserTimeout(value)

setModifiedUserTimeout(value)

setUserClass(userClass)
Set the userClass, which cannot be None and must inherit from User.

See also: userClass().

shutDown()

Perform any tasks necessary to shut down the user manager.

Subclasses may override and must invoke super as their last step.

userClass()

Return the userClass, which is used by createUser.

The default value is UserKit.User.User.

userForExternalId(externalId, default=<class 'MiscUtils.NoDefault'>)
Return the user with the given external id.

The user record is pulled into memory if needed.

userForName(name, default=<class 'MiscUtils.NoDefault'>)
Return the user with the given name.

The user record is pulled into memory if needed.

userForSerialNum(serialNum, default=<class 'MiscUtils.NoDefault'>)
Return the user with the given serialNum.

The user record is pulled into memory if needed.

users()

Return a list of all users (regardless of login status).

19.3.9 UserManagerToFile

The UserManagerToFile class.

class UserKit.UserManagerToFile.UserManagerToFile(userClass=None)
Bases: UserManager

User manager storing user data in the file system.

When using this user manager, make sure you invoke setUserDir() and that this directory is writeable by your
application. It will contain one file per user with the user’s serial number as the main filename and an extension
of ‘.user’.

The default user directory is the current working directory, but relying on the current directory is often a bad
practice.

222 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

__init__(userClass=None)

activeUserTimeout()

activeUsers()

Return a list of all active users.

addUser(user)

cachedUserTimeout()

clearCache()

Clear the cache of the manager.

Use with extreme caution. If your program maintains a reference to a user object, but the manager loads in
a new copy later on, then consistency problems could occur.

The most popular use of this method is in the regression test suite.

createUser(name, password, userClass=None)
Return a newly created user that is added to the manager.

If userClass is not specified, the manager’s default user class is instantiated. This not imply that the user is
logged in. This method invokes self.addUser().

See also: userClass(), setUserClass()

decoder()

encoder()

inactiveUsers()

initNextSerialNum()

loadUser(serialNum, default=<class 'MiscUtils.NoDefault'>)
Load the user with the given serial number from disk.

If there is no such user, a KeyError will be raised unless a default value was passed, in which case that value
is returned.

login(user, password)
Return the user if login is successful, otherwise return None.

loginExternalId(externalId, password)

loginName(userName, password)

loginSerialNum(serialNum, password)

logout(user)

modifiedUserTimeout()

nextSerialNum()

numActiveUsers()

Return the number of active users (e.g. the logged in users).

19.3. UserKit 223



Webware for Python 3, Release 3.0.9

scanSerialNums()

Return a list of all the serial numbers of users found on disk.

Serial numbers are always integers.

setActiveUserTimeout(value)

setCachedUserTimeout(value)

setEncoderDecoder(encoder, decoder)

setModifiedUserTimeout(value)

setUserClass(userClass)
Overridden to mix in UserMixIn to the class that is passed in.

setUserDir(userDir)
Set the directory where user information is stored.

You should strongly consider invoking initNextSerialNum() afterwards.

shutDown()

Perform any tasks necessary to shut down the user manager.

Subclasses may override and must invoke super as their last step.

userClass()

Return the userClass, which is used by createUser.

The default value is UserKit.User.User.

userDir()

userForExternalId(externalId, default=<class 'MiscUtils.NoDefault'>)
Return the user with the given external id.

The user record is pulled into memory if needed.

userForName(name, default=<class 'MiscUtils.NoDefault'>)
Return the user with the given name.

The user record is pulled into memory if needed.

userForSerialNum(serialNum, default=<class 'MiscUtils.NoDefault'>)
Return the user with the given serialNum.

The user record is pulled into memory if needed.

users()

Return a list of all users (regardless of login status).

class UserKit.UserManagerToFile.UserMixIn

Bases: object

filename()

save()

224 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

19.4 TaskKit

19.4.1 Scheduler

This is the task manager Python package.

It provides a system for running any number of predefined tasks in separate threads in an organized and controlled
manner.

A task in this package is a class derived from the Task class. The task should have a run method that, when called,
performs some task.

The Scheduler class is the organizing object. It manages the addition, execution, deletion, and well being of a number
of tasks. Once you have created your task class, you call the Scheduler to get it added to the tasks to be run.

class TaskKit.Scheduler.Scheduler(daemon=True, exceptionHandler=None)
Bases: Thread

The top level class of the task manager system.

The Scheduler is a thread that handles organizing and running tasks. The Scheduler class should be instantiated
to start a task manager session. Its start method should be called to start the task manager. Its stop method should
be called to end the task manager session.

__init__(daemon=True, exceptionHandler=None)
This constructor should always be called with keyword arguments. Arguments are:

group should be None; reserved for future extension when a ThreadGroup class is implemented.

target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is called.

name is the thread name. By default, a unique name is constructed of the form “Thread-N” where N is a
small decimal number.

args is the argument tuple for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation. Defaults to {}.

If a subclass overrides the constructor, it must make sure to invoke the base class constructor
(Thread.__init__()) before doing anything else to the thread.

addActionOnDemand(task, name)
Add a task to be run only on demand.

Adds a task to the scheduler that will not be scheduled until specifically requested.

addDailyAction(hour, minute, task, name)
Add an action to be run every day at a specific time.

If a task with the given name is already registered with the scheduler, that task will be removed from the
scheduling queue and registered anew as a periodic task.

Can we make this addCalendarAction? What if we want to run something once a week? We probably
don’t need that for Webware, but this is a more generally useful module. This could be a difficult function,
though. Particularly without mxDateTime.

addPeriodicAction(start, period, task, name)
Add a task to be run periodically.

Adds an action to be run at a specific initial time, and every period thereafter.

The scheduler will not reschedule a task until the last scheduled instance of the task has completed.

19.4. TaskKit 225



Webware for Python 3, Release 3.0.9

If a task with the given name is already registered with the scheduler, that task will be removed from the
scheduling queue and registered anew as a periodic task.

addTimedAction(actionTime, task, name)
Add a task to be run once, at a specific time.

property daemon

A boolean value indicating whether this thread is a daemon thread.

This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from
the creating thread; the main thread is not a daemon thread and therefore all threads created in the main
thread default to daemon = False.

The entire Python program exits when only daemon threads are left.

delOnDemand(name)
Delete a task with the given name from the on demand list.

delRunning(name)
Delete a task from the running list.

Used internally.

delScheduled(name)
Delete a task with the given name from the scheduled list.

demandTask(name)
Demand execution of a task.

Allow the server to request that a task listed as being registered on-demand be run as soon as possible.

If the task is currently running, it will be flagged to run again as soon as the current run completes.

Returns False if the task name could not be found on the on-demand or currently running lists.

disableTask(name)
Specify that a task be suspended.

Suspended tasks will not be scheduled until later enabled. If the task is currently running, it will not be
interfered with, but the task will not be scheduled for execution in future until re-enabled.

Returns True if the task was found and disabled.

enableTask(name)
Enable a task again.

This method is provided to specify that a task be re-enabled after a suspension. A re-enabled task will be
scheduled for execution according to its original schedule, with any runtimes that would have been issued
during the time the task was suspended simply skipped.

Returns True if the task was found and enabled.

getName()

hasOnDemand(name)
Checks whether task with given name is in the on demand list.

hasRunning(name)
Check to see if a task with the given name is currently running.

hasScheduled(name)
Checks whether task with given name is in the scheduled list.

226 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

property ident

Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread
exits and another thread is created. The identifier is available even after the thread has exited.

isAlive()

Return whether the thread is alive.

This method is deprecated, use is_alive() instead.

isDaemon()

isRunning()

Check whether thread is running.

is_alive()

Return whether the thread is alive.

This method returns True just before the run() method starts until just after the run() method terminates.
The module function enumerate() returns a list of all alive threads.

join(timeout=None)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call timed
out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same exception.

property name

A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor.

nextTime()

Get next execution time.

notify()

Wake up scheduler by sending a notify even.

notifyCompletion(handle)
Notify completion of a task.

Used by instances of TaskHandler to let the Scheduler thread know when their tasks have run to completion.
This method is responsible for rescheduling the task if it is a periodic task.

notifyFailure(handle)
Notify failure of a task.

Used by instances of TaskHandler to let the Scheduler thread know if an exception has occurred within the
task thread.

19.4. TaskKit 227



Webware for Python 3, Release 3.0.9

onDemand(name, default=None)
Return a task from the onDemand list.

onDemandTasks()

Return all on demand tasks.

run()

The main method of the scheduler running as a background thread.

This method is responsible for carrying out the scheduling work of this class on a background thread. The
basic logic is to wait until the next action is due to run, move the task from our scheduled list to our running
list, and run it. Other synchronized methods such as runTask(), scheduleTask(), and notifyCompletion(),
may be called while this method is waiting for something to happen. These methods modify the data
structures that run() uses to determine its scheduling needs.

runTask(handle)
Run a task.

Used by the Scheduler thread’s main loop to put a task in the scheduled hash onto the run hash.

runTaskNow(name)
Allow a registered task to be immediately executed.

Returns True if the task is either currently running or was started, or False if the task could not be found in
the list of currently registered tasks.

running(name, default=None)
Return running task with given name.

Returns a task with the given name from the “running” list, if it is present there.

runningTasks()

Return all running tasks.

scheduleTask(handle)
Schedule a task.

This method takes a task that needs to be scheduled and adds it to the scheduler. All scheduling additions
or changes are handled by this method. This is the only Scheduler method that can notify the run() method
that it may need to wake up early to handle a newly registered task.

scheduled(name, default=None)
Return a task from the scheduled list.

scheduledTasks()

Return all scheduled tasks.

setDaemon(daemonic)

setName(name)

setNextTime(nextTime)
Set next execution time.

setOnDemand(handle)
Add the given task to the on demand list.

228 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

setRunning(handle)
Add a task to the running dictionary.

Used internally only.

setScheduled(handle)
Add the given task to the scheduled list.

start()

Start the scheduler’s activity.

stop()

Terminate the scheduler and its associated tasks.

stopAllTasks()

Terminate all running tasks.

stopTask(name)
Put an immediate halt to a running background task.

Returns True if the task was either not running, or was running and was told to stop.

unregisterTask(name)
Unregisters the named task.

After that it can be rescheduled with different parameters, or simply removed.

wait(seconds=None)
Our own version of wait().

When called, it waits for the specified number of seconds, or until it is notified that it needs to wake up,
through the notify event.

19.4.2 Task

Base class for tasks.

class TaskKit.Task.Task

Bases: object

Abstract base class from which you have to derive your own tasks.

__init__()

Subclasses should invoke super for this method.

handle()

Return the task handle.

A task is scheduled by wrapping a handler around it. It knows everything about the scheduling (periodicity
and the like). Under normal circumstances you should not need the handler, but if you want to write period
modifying run() methods, it is useful to have access to the handler. Use it with care.

name()

Return the unique name under which the task was scheduled.

proceed()

Check whether this task should continue running.

Should be called periodically by long tasks to check if the system wants them to exit. Returns True if its
OK to continue, False if it’s time to quit.

19.4. TaskKit 229



Webware for Python 3, Release 3.0.9

run()

Override this method for you own tasks.

Long running tasks can periodically use the proceed() method to check if a task should stop.

19.4.3 TaskHandler

class TaskKit.TaskHandler.TaskHandler(scheduler, start, period, task, name)
Bases: object

The task handler.

While the Task class only knows what task to perform with the run()-method, the TaskHandler has all the knowl-
edge about the periodicity of the task. Instances of this class are managed by the Scheduler in the scheduled,
running and onDemand dictionaries.

__init__(scheduler, start, period, task, name)

disable()

Disable future invocations of this task.

enable()

Enable future invocations of this task.

isOnDemand()

Return True if this task is not scheduled for periodic execution.

isRunning()

name()

notifyCompletion()

notifyFailure()

period()

Return the period of this task.

reschedule()

Determine whether this task should be rescheduled.

Increments the startTime and returns true if this is a periodically executed task.

reset(start, period, task, reRegister)

runAgain()

Determine whether this task should be run again.

This method lets the Scheduler check to see whether this task should be re-run when it terminates.

runOnCompletion()

Request that this task be re-run after its current completion.

Intended for on-demand tasks that are requested by the Scheduler while they are already running.

runTask()

Run this task in a background thread.

setOnDemand(onDemand=True)

230 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

setPeriod(period)
Change the period for this task.

startTime(newTime=None)

stop()

unregister()

Request that this task not be kept after its current completion.

Used to remove a task from the scheduler.

19.5 WebUtils

19.5.1 ExpansiveHTMLForException

ExpansiveHTMLForException.py

Create expansive HTML for exceptions using the CGITraceback module.

WebUtils.ExpansiveHTMLForException.ExpansiveHTMLForException(context=5, options=None)
Create expansive HTML for exceptions.

WebUtils.ExpansiveHTMLForException.expansiveHTMLForException(context=5, options=None)
Create expansive HTML for exceptions.

19.5.2 FieldStorage

FieldStorage.py

This module provides that latest version of the now deprecated standard Python cgi.FieldStorage class with a slight
modification so that fields passed in the body of a POST request override any fields passed in the query string.

class WebUtils.FieldStorage.FieldStorage(fp=None, headers=None, outerboundary=b'', environ=None,
keep_blank_values=False, strict_parsing=False, limit=None,
encoding='utf-8', errors='replace', max_num_fields=None,
separator='&')

Bases: object

Store a sequence of fields, reading multipart/form-data.

This is a slightly modified version of the FieldStorage class in the now deprecated cgi module of the standard
library.

This class provides naming, typing, files stored on disk, and more. At the top level, it is accessible like a dictio-
nary, whose keys are the field names. (Note: None can occur as a field name.) The items are either a Python list
(if there’s multiple values) or another FieldStorage or MiniFieldStorage object. If it’s a single object, it has the
following attributes:

name: the field name, if specified; otherwise None filename: the filename, if specified; otherwise None; this is
the client side filename, not the file name on which it is stored (that’s a temporary file you don’t deal with)

value: the value as a string; for file uploads, this transparently reads the file every time you request the value and
returns bytes

file: the file(-like) object from which you can read the data as bytes; None if the data is stored a simple string

19.5. WebUtils 231



Webware for Python 3, Release 3.0.9

type: the content-type, or None if not specified

type_options: dictionary of options specified on the content-type line

disposition: content-disposition, or None if not specified

disposition_options: dictionary of corresponding options

headers: a dictionary(-like) object (sometimes email.message.Message or a subclass thereof) containing all head-
ers

The class can be subclassed, mostly for the purpose of overriding the make_file() method, which is called inter-
nally to come up with a file open for reading and writing. This makes it possible to override the default choice
of storing all files in a temporary directory and unlinking them as soon as they have been opened.

Parameters in the query string which have not been sent via POST are appended to the field list. This is different
from the behavior of Python versions before 2.6 which completely ignored the query string in POST request, but
it’s also different from the behavior of the later Python versions which append values from the query string to
values sent via POST for parameters with the same name. With other words, our FieldStorage class overrides
the query string parameters with the parameters sent via POST.

FieldStorageClass = None

__init__(fp=None, headers=None, outerboundary=b'', environ=None, keep_blank_values=False,
strict_parsing=False, limit=None, encoding='utf-8', errors='replace', max_num_fields=None,
separator='&')

Constructor. Read multipart/* until last part. Arguments, all optional: fp: file pointer; default:
sys.stdin.buffer

Not used when the request method is GET. Can be a TextIOWrapper object or an object whose read() and
readline() methods return bytes.

headers: header dictionary-like object; default: taken from environ as per CGI spec

outerboundary: terminating multipart boundary (for internal use only)

environ: environment dictionary; default: os.environ

keep_blank_values: flag indicating whether blank values in percent-encoded forms should be treated as
blank strings. A true value indicates that blanks should be retained as blank strings. The default false value
indicates that blank values are to be ignored and treated as if they were not included.

strict_parsing: flag indicating what to do with parsing errors. If false (the default), errors are silently
ignored. If true, errors raise a ValueError exception.

limit: used internally to read parts of multipart/form-data forms, to exit from the reading loop when reached.
It is the difference between the form content-length and the number of bytes already read.

encoding, errors: the encoding and error handler used to decode the binary stream to strings. Must be the
same as the charset defined for the page sending the form (content-type : meta http-equiv or header)

max_num_fields: int. If set, then __init__ throws a ValueError if there are more than n fields read by
parse_qsl().

bufsize = 8192

getfirst(key, default=None)
Return the first value received.

getlist(key)
Return list of received values.

232 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

getvalue(key, default=None)
Dictionary style get() method, including ‘value’ lookup.

keys()

Dictionary style keys() method.

make_file()

Overridable: return a readable & writable file.

The file will be used as follows: - data is written to it - seek(0) - data is read from it The file is opened
in binary mode for files, in text mode for other fields. This version opens a temporary file for reading and
writing, and immediately deletes (unlinks) it. The trick (on Unix!) is that the file can still be used, but it
can’t be opened by another process, and it will automatically be deleted when it is closed or when the current
process terminates. If you want a more permanent file, you derive a class which overrides this method. If
you want a visible temporary file that is nevertheless automatically deleted when the script terminates, try
defining a __del__ method in a derived class which unlinks the temporary files you have created.

read_binary()

Internal: read binary data.

read_lines()

Internal: read lines until EOF or outerboundary.

read_lines_to_eof()

Internal: read lines until EOF.

read_lines_to_outerboundary()

Internal: read lines until outerboundary.

Data is read as bytes: boundaries and line ends must be converted to bytes for comparisons.

read_multi(environ, keep_blank_values, strict_parsing)
Internal: read a part that is itself multipart.

read_single()

Internal: read an atomic part.

read_urlencoded()

Internal: read data in query string format.

skip_lines()

Internal: skip lines until outer boundary if defined.

class WebUtils.FieldStorage.MiniFieldStorage(name, value)
Bases: object

Like FieldStorage, for use when no file uploads are possible.

__init__(name, value)
Constructor from field name and value.

disposition = None

disposition_options = {}

file = None

filename = None

19.5. WebUtils 233



Webware for Python 3, Release 3.0.9

headers = {}

list = None

type = None

type_options = {}

WebUtils.FieldStorage.hasSeparator()

Check whether the separator parameter is supported.

WebUtils.FieldStorage.isBinaryType(ctype, pdict=None)
“Check whether the given MIME type uses binary data.

WebUtils.FieldStorage.parse_header(line)
Parse a Content-type like header.

Return the main content-type and a dictionary of options.

WebUtils.FieldStorage.valid_boundary(s)

19.5.3 Funcs

WebUtils.Funcs

This module provides some basic functions that are useful in HTML and web development.

You can safely import * from WebUtils.Funcs if you like.

WebUtils.Funcs.htmlDecode(s, codes=(('"', '&quot;'), ('>', '&gt;'), ('<', '&lt;'), ('&', '&amp;')))
Return the ASCII decoded version of the given HTML string.

This does NOT remove normal HTML tags like <p>. It is the inverse of htmlEncode().

The optional ‘codes’ parameter allows passing custom translations.

WebUtils.Funcs.htmlEncode(what, codes=(('&', '&amp;'), ('<', '&lt;'), ('>', '&gt;'), ('"', '&quot;')))
Return the HTML encoded version of the given object.

The optional ‘codes’ parameter allows passing custom translations.

WebUtils.Funcs.htmlEncodeStr(s, codes=(('&', '&amp;'), ('<', '&lt;'), ('>', '&gt;'), ('"', '&quot;')))
Return the HTML encoded version of the given string.

This is useful to display a plain ASCII text string on a web page.

The optional ‘codes’ parameter allows passing custom translations.

WebUtils.Funcs.htmlForDict(d, addSpace=None, filterValueCallBack=None, maxValueLength=None,
topHeading=None, isEncoded=None)

Return HTML string with a table where each row is a key/value pair.

WebUtils.Funcs.normURL(path)
Normalizes a URL path, like os.path.normpath.

Acts on a URL independent of operating system environment.

234 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

WebUtils.Funcs.requestURI(env)
Return the request URI for a given CGI-style dictionary.

Uses REQUEST_URI if available, otherwise constructs and returns it from SCRIPT_URL, SCRIPT_NAME,
PATH_INFO and QUERY_STRING.

WebUtils.Funcs.urlDecode(string, encoding='utf-8', errors='replace')
Like unquote(), but also replace plus signs by spaces, as required for unquoting HTML form values.

unquote_plus(‘%7e/abc+def’) -> ‘~/abc def’

WebUtils.Funcs.urlEncode(string, safe='', encoding=None, errors=None)
Like quote(), but also replace ‘ ‘ with ‘+’, as required for quoting HTML form values. Plus signs in the original
string are escaped unless they are included in safe. It also does not have safe default to ‘/’.

19.5.4 HTMLForException

HTMLForException.py

Create HTML for exceptions.

WebUtils.HTMLForException.HTMLForException(excInfo=None, options=None)
Get HTML for displaying an exception.

Returns an HTML string that presents useful information to the developer about the exception. The first argument
is a tuple such as returned by sys.exc_info() which is in fact invoked if the tuple isn’t provided.

WebUtils.HTMLForException.HTMLForLines(lines, options=None)
Create HTML for exceptions and tracebacks from a list of strings.

WebUtils.HTMLForException.HTMLForStackTrace(frame=None, options=None)
Get HTML for displaying a stack trace.

Returns an HTML string that presents useful information to the developer about the stack. The first argument is
a stack frame such as returned by sys._getframe() which is in fact invoked if a stack frame isn’t provided.

WebUtils.HTMLForException.htmlForException(excInfo=None, options=None)
Get HTML for displaying an exception.

Returns an HTML string that presents useful information to the developer about the exception. The first argument
is a tuple such as returned by sys.exc_info() which is in fact invoked if the tuple isn’t provided.

WebUtils.HTMLForException.htmlForLines(lines, options=None)
Create HTML for exceptions and tracebacks from a list of strings.

WebUtils.HTMLForException.htmlForStackTrace(frame=None, options=None)
Get HTML for displaying a stack trace.

Returns an HTML string that presents useful information to the developer about the stack. The first argument is
a stack frame such as returned by sys._getframe() which is in fact invoked if a stack frame isn’t provided.

19.5. WebUtils 235



Webware for Python 3, Release 3.0.9

19.5.5 HTMLTag

HTMLTag.py

HTMLTag defines a class of the same name that represents HTML content. An additional HTMLReader class kicks
off the process of reading an HTML file into a set of tags:

from WebUtils.HTMLTag import HTMLReader
reader = HTMLReader()
tag = reader.readFileNamed('foo.html')
tag.pprint()

Tags have attributes and children, which makes them hierarchical. See HTMLTag class docs for more info.

Note that you imported HTMLReader instead of HTMLTag. You only need the latter if you plan on creating tags
directly.

You can discard the reader immediately if you like:

tag = HTMLReader().readFileNamed('foo.html')

The point of reading HTML into tag objects is so that you have a concrete, Pythonic data structure to work with. The
original motivation for such a beast was in building automated regression test suites that wanted granular, structured
access to the HTML output by the web application.

See the doc string for HTMLTag for examples of what you can do with tags.

exception WebUtils.HTMLTag.HTMLNotAllowedError(msg, **values)
Bases: HTMLTagError

HTML tag not allowed here error

__init__(msg, **values)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class WebUtils.HTMLTag.HTMLReader(emptyTags=None, extraEmptyTags=None, fakeRootTagIfNeeded=True)
Bases: HTMLParser

Reader class for representing HTML as tag objects.

NOTES

• Special attention is required regarding tags like <p> and <li> which sometimes are closed and sometimes
not. HTMLReader can deal with both situations (closed and not) provided that:

– the file doesn’t change conventions for a given tag

– the reader knows ahead of time what to expect

Be default, HTMLReader assumes that <p> and <li> will be closed with </p> and </li> as the official HTML
spec encourages.

But if your files don’t close certain tags that are supposed to be required, you can do this:

HTMLReader(extraEmptyTags=['p', 'li'])

or:

236 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

reader.extendEmptyTags(['p', 'li'])

or just set them entirely:

HTMLReader(emptyTags=['br', 'hr', 'p'])
reader.setEmptyTags(['br', 'hr', 'p'])

Although there are quite a few. Consider the DefaultEmptyTags global list (which is used to initialize the reader’s
tags) which contains about 16 tag names.

If an HTML file doesn’t conform to the reader’s expectation, you will get an exception (see more below for
details).

If your HTML file doesn’t contain root <html> ... </html> tags wrapping everything, a fake root tag will be
constructed for you, unless you pass in fakeRootTagIfNeeded=False.

Besides fixing your reader manually, you could conceivably loop through the permutations of the various empty
tags to see if one of them resulted in a correct read.

Or you could fix the HTML.

• The reader ignores extra preceding and trailing whitespace by stripping it from strings. I suppose this is a
little harsher than reducing spans of preceding and trailing whitespace down to one space, which is what
really happens in an HTML browser.

• The reader will not read past the closing </html> tag.

• The reader is picky about the correctness of the HTML you feed it. If tags are not closed, overlap (instead
of nest) or left unfinished, an exception is thrown. These include HTMLTagUnbalancedError, HTMLTag-
IncompleteError and HTMLNotAllowedError which all inherit HTMLTagError.

This pickiness can be quite useful for the validation of the HTML of your own applications.

CDATA_CONTENT_ELEMENTS = ('script', 'style')

__init__(emptyTags=None, extraEmptyTags=None, fakeRootTagIfNeeded=True)
Initialize and reset this instance.

If convert_charrefs is True (the default), all character references are automatically converted to the corre-
sponding Unicode characters.

check_for_whole_start_tag(i)

clear_cdata_mode()

close()

Handle any buffered data.

computeTagContainmentConfig()

emptyTags()

Return a list of empty tags.

See also: class docs and setEmptyTags().

error(message)

extendEmptyTags(tagList)
Extend the current list of empty tags with the given list.

19.5. WebUtils 237



Webware for Python 3, Release 3.0.9

feed(data)
Feed data to the parser.

Call this as often as you want, with as little or as much text as you want (may include ‘n’).

filename()

Return the name of the file if one has been read, otherwise None.

get_starttag_text()

Return full source of start tag: ‘<. . .>’.

getpos()

Return current line number and offset.

goahead(end)

handle_charref(name)

handle_comment(data)

handle_data(data)

handle_decl(decl)

handle_endtag(tag)

handle_entityref(name)

handle_pi(data)

handle_startendtag(tag, attrs)

handle_starttag(tag, attrs)

main(args=None)
The command line equivalent of readFileNamed().

Invoked when HTMLTag is run as a program.

parse_bogus_comment(i, report=1)

parse_comment(i, report=1)

parse_declaration(i)

parse_endtag(i)

parse_html_declaration(i)

parse_marked_section(i, report=1)

parse_pi(i)

parse_starttag(i)

pprint(out=None)
Pretty prints the tag, its attributes and all its children.

Indentation is used for subtags. Print ‘Empty.’ if there is no root tag.

printsStack()

238 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

readFileNamed(filename, retainRootTag=True, encoding='utf-8')
Read the given file.

Relies on readString(). See that method for more information.

readString(string, retainRootTag=True)
Read the given string, store the results and return the root tag.

You could continue to use HTMLReader object or disregard it and simply use the root tag.

reset()

Reset this instance. Loses all unprocessed data.

rootTag()

Return the root tag.

May return None if no HTML has been read yet, or if the last invocation of one of the read methods was
passed retainRootTag=False.

setEmptyTags(tagList)
Set the HTML tags that are considered empty such as <br> and <hr>.

The default is found in the global, DefaultEmptyTags, and is fairly thorough, but does not include <p>, <li>
and some other tags that HTML authors often use as empty tags.

setPrintsStack(flag)
Set the boolean value of the “prints stack” option.

This is a debugging option which will print the internal tag stack during HTML processing. The default
value is False.

set_cdata_mode(elem)

tagContainmentConfig = {'body': 'cannotHave html head body', 'head': 'cannotHave
html head body', 'html': 'canOnlyHave head body', 'select': 'canOnlyHave option',
'table': 'canOnlyHave tr thead tbody tfoot a', 'td': 'cannotHave td tr', 'tr':
'canOnlyHave th td'}

unescape(s)

unknown_decl(data)

updatepos(i, j)

usage()

class WebUtils.HTMLTag.HTMLTag(name, lineNumber=None)
Bases: object

Container class for representing HTML as tag objects.

Tags essentially have 4 major attributes:

• name

• attributes

• children

• subtags

Name is simple:
print(tag.name())

19.5. WebUtils 239



Webware for Python 3, Release 3.0.9

Attributes are dictionary-like in nature:

print(tag.attr('color')) # throws an exception if no color
print(tag.attr('bgcolor', None)) # returns None if no bgcolor
print(tag.attrs())

Children are all the leaf parts of a tag, consisting of other tags and strings of character data:

print(tag.numChildren())
print(tag.childAt(0))
print(tag.children())

Subtags is a convenient list of only the tags in the children:

print(tag.numSubtags())
print(tag.subtagAt(0))
print(tag.subtags())

You can search a tag and all the tags it contains for a tag with a particular attribute matching a particular value:

print(tag.tagWithMatchingAttr('width', '100%'))

An HTMLTagAttrLookupError is raised if no matching tag is found. You can avoid this by providing a default
value:

print(tag.tagWithMatchingAttr('width', '100%', None))

Looking for specific ‘id’ attributes is common in regression testing (it allows you to zero in on logical portions
of a page), so a convenience method is provided:

tag = htmlTag.tagWithId('accountTable')

__init__(name, lineNumber=None)

addChild(child)
Add a child to the receiver.

The child will be another tag or a string (CDATA).

attr(name, default=<class 'MiscUtils.NoDefault'>)

attrs()

childAt(index)

children()

closedBy(name, lineNumber)

hasAttr(name)

name()

numAttrs()

numChildren()

numSubtags()

240 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

pprint(out=None, indent=0)

readAttr(name, value)
Set an attribute of the tag with the given name and value.

A HTMLTagAttrLookupError is raised if an attribute is set twice.

subtagAt(index)

subtags()

tagWithId(id_, default=<class 'MiscUtils.NoDefault'>)
Search for tag with a given id.

Finds and returns the tag with the given id. As in:

<td id=foo> bar </td>

This is just a cover for:

tagWithMatchingAttr('id', id_, default)

But searching for id’s is so popular (at least in regression testing web sites) that this convenience method is
provided. Why is it so popular? Because by attaching ids to logical portions of your HTML, your regression
test suite can quickly zero in on them for examination.

tagWithMatchingAttr(name, value, default=<class 'MiscUtils.NoDefault'>)
Search for tag with matching attributes.

Performs a depth-first search for a tag with an attribute that matches the given value. If the tag cannot be
found, a KeyError will be raised unless a default value was specified, which is then returned.

Example:

tag = tag.tagWithMatchingAttr('bgcolor', '#FFFFFF', None)

exception WebUtils.HTMLTag.HTMLTagAttrLookupError(msg, **values)
Bases: HTMLTagError, LookupError

HTML tag attribute lookup error

__init__(msg, **values)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception WebUtils.HTMLTag.HTMLTagError(msg, **values)
Bases: Exception

General HTML tag error

__init__(msg, **values)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

19.5. WebUtils 241



Webware for Python 3, Release 3.0.9

exception WebUtils.HTMLTag.HTMLTagIncompleteError(msg, **values)
Bases: HTMLTagError

HTML tag incomplete error

__init__(msg, **values)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception WebUtils.HTMLTag.HTMLTagProcessingInstructionError(msg, **values)
Bases: HTMLTagError

HTML tag processing instruction error

__init__(msg, **values)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception WebUtils.HTMLTag.HTMLTagUnbalancedError(msg, **values)
Bases: HTMLTagError

Unbalanced HTML tag error

__init__(msg, **values)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class WebUtils.HTMLTag.TagCanOnlyHaveConfig(name, tags)
Bases: TagConfig

__init__(name, tags)

encounteredTag(tag, lineNum)

class WebUtils.HTMLTag.TagCannotHaveConfig(name, tags)
Bases: TagConfig

__init__(name, tags)

encounteredTag(tag, lineNum)

class WebUtils.HTMLTag.TagConfig(name, tags)
Bases: object

__init__(name, tags)

encounteredTag(tag, lineNum)

242 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

19.5.6 HTTPStatusCodes

HTTPStatusCodes.py

Dictionary of HTTP status codes.

WebUtils.HTTPStatusCodes.htmlTableOfHTTPStatusCodes(codes=None, tableArgs='',
rowArgs='style="vertical-align:top"',
colArgs='', headingArgs='')

Return an HTML table with HTTP status codes.

Returns an HTML string containing all the status code information as provided by this module. It’s highly
recommended that if you pass arguments to this function, that you do so by keyword.

19.6 MiscUtils

19.6.1 Configurable

Configurable.py

Provides configuration file functionality.

class MiscUtils.Configurable.Configurable

Bases: object

Abstract superclass for configuration file functionality.

Subclasses should override:

• defaultConfig() to return a dictionary of default settings
such as {‘Frequency’: 5}

• configFilename() to return the filename by which users can
override the configuration such as ‘Pinger.config’

Subclasses typically use the setting() method, for example:

time.sleep(self.setting(‘Frequency’))

They might also use the printConfig() method, for example:

self.printConfig() # or self.printConfig(file)

Users of your software can create a file with the same name as configFilename() and selectively override settings.
The format of the file is a Python dictionary.

Subclasses can also override userConfig() in order to obtain the user configuration settings from another source.

__init__()

commandLineConfig()

Return the settings that came from the command-line.

These settings come via addCommandLineSetting().

config()

Return the configuration of the object as a dictionary.

This is a combination of defaultConfig() and userConfig(). This method caches the config.

19.6. MiscUtils 243



Webware for Python 3, Release 3.0.9

configFilename()

Return the full name of the user config file.

Users can override the configuration by this config file. Subclasses must override to specify a name. Re-
turning None is valid, in which case no user config file will be loaded.

configName()

Return the name of the configuration file without the extension.

This is the portion of the config file name before the ‘.config’. This is used on the command-line.

configReplacementValues()

Return a dictionary for substitutions in the config file.

This must be a dictionary suitable for use with “string % dict” that should be used on the text in the config
file. If an empty dictionary (or None) is returned, then no substitution will be attempted.

defaultConfig()

Return a dictionary with all the default values for the settings.

This implementation returns {}. Subclasses should override.

hasSetting(name)
Check whether a configuration setting has been changed.

printConfig(dest=None)
Print the configuration to the given destination.

The default destination is stdout. A fixed with font is assumed for aligning the values to start at the same
column.

static readConfig(filename)
Read the configuration from the file with the given name.

Raises an UIError if the configuration cannot be read.

This implementation assumes the file is stored in utf-8 encoding with possible BOM at the start, but also
tries to read as latin-1 if it cannot be decoded as utf-8. Subclasses can override this behavior.

setSetting(name, value)
Set a particular configuration setting.

setting(name, default=<class 'MiscUtils.NoDefault'>)
Return the value of a particular setting in the configuration.

userConfig()

Return the user config overrides.

These settings can be found in the optional config file. Returns {} if there is no such file.

The config filename is taken from configFilename().

exception MiscUtils.Configurable.ConfigurationError

Bases: Exception

Error in configuration file.

__init__(*args, **kwargs)

args

244 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

MiscUtils.Configurable.addCommandLineSetting(name, value)
Override the configuration with a command-line setting.

Take a setting, like “Application.Verbose=0”, and call addCommandLineSetting(‘Application.Verbose’, ‘0’), and
it will override any settings in Application.config

MiscUtils.Configurable.commandLineSetting(configName, settingName, default=<class
'MiscUtils.NoDefault'>)

Retrieve a command-line setting.

You can use this with non-existent classes, like “Context.Root=/Webware”, and then fetch it back with comman-
dLineSetting(‘Context’, ‘Root’).

19.6.2 CSVJoiner

CSVJoiner.py

A helper function for joining CSV fields.

MiscUtils.CSVJoiner.joinCSVFields(fields)
Create a CSV record by joining its fields.

Returns a CSV record (e.g. a string) from a sequence of fields. Fields containing commands (,) or double quotes
(”) are quoted, and double quotes are escaped (“”). The terminating newline is not included.

19.6.3 CSVParser

CSVParser.py

A parser for CSV files.

class MiscUtils.CSVParser.CSVParser(allowComments=True, stripWhitespace=True, fieldSep=',',
autoReset=True, doubleQuote=True)

Bases: object

Parser for CSV files.

Parses CSV files including all subtleties such as:

• commas in fields

• double quotes in fields

• embedded newlines in fields

Examples of programs that produce such beasts include MySQL and Excel.

For a higher-level, friendlier CSV class with many conveniences, see DataTable (which uses this class for its
parsing).

Example:

records = []
parse = CSVParser().parse
for line in lines:

results = parse(line)
(continues on next page)

19.6. MiscUtils 245



Webware for Python 3, Release 3.0.9

(continued from previous page)

if results is not None:
records.append(results)

CREDIT

The algorithm was taken directly from the open source Python C-extension, csv: https://www.object-craft.com.
au/projects/csv/

It would be nice to use the csv module when present, since it is substantially faster. Before that can be done, it
needs to support allowComments and stripWhitespace, and pass the TestCSVParser.py test suite.

__init__(allowComments=True, stripWhitespace=True, fieldSep=',', autoReset=True, doubleQuote=True)
Create a new CSV parser.

allowComments:
If true (the default), then comment lines using the Python comment marker are allowed.

stripWhitespace:
If true (the default), then left and right whitespace is stripped off from all fields.

fieldSep:
Defines the field separator string (a comma by default).

autoReset:
If true (the default), recover from errors automatically.

doubleQuote:
If true (the default), assume quotes in fields are escaped by appearing doubled.

endQuotedField(c)

inField(c)

inQuotedField(c)

parse(line)
Parse a single line and return a list of string fields.

Returns None if the CSV record contains embedded newlines and the record is not yet complete.

quoteInField(c)

quoteInQuotedField(c)

reset()

Reset the parser.

Resets the parser to a fresh state in order to recover from exceptions. But if autoReset is true (the default),
this is done automatically.

saveField()

startField(c)

startRecord(c)

exception MiscUtils.CSVParser.ParseError

Bases: Exception

CSV file parse error.

246 Chapter 19. API Reference

https://www.object-craft.com.au/projects/csv/
https://www.object-craft.com.au/projects/csv/


Webware for Python 3, Release 3.0.9

__init__(*args, **kwargs)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

MiscUtils.CSVParser.parse(line)
Parse a single line and return a list of string fields.

Returns None if the CSV record contains embedded newlines and the record is not yet complete.

19.6.4 DataTable

DataTable.py

INTRODUCTION

This class is useful for representing a table of data arranged by named columns, where each row in the table can be
thought of as a record:

name phoneNumber
------ -----------
Chuck 893-3498
Bill 893-0439
John 893-5901

This data often comes from delimited text files which typically have well-defined columns or fields with several rows
each of which can be thought of as a record.

Using a DataTable can be as easy as using lists and dictionaries:

table = DataTable('users.csv')
for row in table:

print(row['name'], row['phoneNumber'])

Or even:

table = DataTable('users.csv')
for row in table:

print('{name} {phoneNumber}'.format(**row))

The above print statement relies on the fact that rows can be treated like dictionaries, using the column headings as
keys.

You can also treat a row like an array:

table = DataTable('something.tabbed', delimiter=' ')
for row in table:

for item in row:
print(item, end=' ')

print()

COLUMNS

Column headings can have a type specification like so:

19.6. MiscUtils 247



Webware for Python 3, Release 3.0.9

name, age:int, zip:int

Possible types include string, int, float and datetime.

String is assumed if no type is specified but you can set that assumption when you create the table:

table = DataTable(headings, defaultType='float')

Using types like int and float will cause DataTable to actually convert the string values (perhaps read from a file) to
these types so that you can use them in natural operations. For example:

if row['age'] > 120:
self.flagData(row, 'age looks high')

As you can see, each row can be accessed as a dictionary with keys according the column headings. Names are case
sensitive.

ADDING ROWS

Like Python lists, data tables have an append() method. You can append TableRecords, or you pass a dictionary, list or
object, in which case a TableRecord is created based on given values. See the method docs below for more details.

FILES

By default, the files that DataTable reads from are expected to be comma-separated value files.

Limited comments are supported: A comment is any line whose very first character is a #. This allows you to easily
comment out lines in your data files without having to remove them.

Whitespace around field values is stripped.

You can control all this behavior through the arguments found in the initializer and the various readFoo() methods:

...delimiter=',', allowComments=True, stripWhite=True

For example:

table = DataTable('foo.tabbed', delimiter=' ',
allowComments=False, stripWhite=False)

You should access these parameters by their name since additional ones could appear in the future, thereby changing
the order.

If you are creating these text files, we recommend the comma-separated-value format, or CSV. This format is better
defined than the tab delimited format, and can easily be edited and manipulated by popular spreadsheets and databases.

MICROSOFT EXCEL

On Microsoft Windows systems with Excel and the PyWin32 package (https://github.com/mhammond/pywin32),
DataTable will use Excel (via COM) to read “.xls” files:

from MiscUtils import DataTable
assert DataTable.canReadExcel()
table = DataTable.DataTable('foo.xls')

With consistency to its CSV processing, DataTable will ignore any row whose first cell is ‘#’ and strip surrounding
whitespace around strings.

TABLES FROM SCRATCH

Here’s an example that constructs a table from scratch:

248 Chapter 19. API Reference

https://github.com/mhammond/pywin32


Webware for Python 3, Release 3.0.9

table = DataTable(['name', 'age:int'])
table.append(['John', 80])
table.append({'name': 'John', 'age': 80})
print(table)

QUERIES

A simple query mechanism is supported for equality of fields:

matches = table.recordsEqualTo({'uid': 5})
if matches:

for match in matches:
print(match)

else:
print('No matches.')

COMMON USES

• Programs can keep configuration and other data in simple comma- separated text files and use DataTable to
access them. For example, a web site could read its sidebar links from such a file, thereby allowing people who
don’t know Python (or even HTML) to edit these links without having to understand other implementation parts
of the site.

• Servers can use DataTable to read and write log files.

FROM THE COMMAND LINE

The only purpose in invoking DataTable from the command line is to see if it will read a file:

> python DataTable.py foo.csv

The data table is printed to stdout.

CACHING

DataTable uses “pickle caching” so that it can read .csv files faster on subsequent loads. You can disable this across
the board with:

from MiscUtils.DataTable import DataTable
DataTable._usePickleCache = False

Or per instance by passing “usePickleCache=False” to the constructor.

See the docstring of PickleCache.py for more information.

MORE DOCS

Some of the methods in this module have worthwhile doc strings to look at. See below.

TO DO

• Allow callback parameter or setting for parsing CSV records.

• Perhaps TableRecord should inherit list and dict and override methods as appropriate?

• _types and _blankValues aren’t really packaged, advertised or documented for customization by the user of this
module.

• DataTable:

– Parameterize the TextColumn class.

19.6. MiscUtils 249



Webware for Python 3, Release 3.0.9

– Parameterize the TableRecord class.

– More list-like methods such as insert()

– writeFileNamed() is flawed: it doesn’t write the table column type

– Should it inherit from list?

• Add error checking that a column name is not a number (which could cause problems).

• Reading Excel sheets with xlrd, not only with win32com.

class MiscUtils.DataTable.DataTable(filenameOrHeadings=None, delimiter=',', allowComments=True,
stripWhite=True, encoding=None, defaultType=None,
usePickleCache=None)

Bases: object

Representation of a data table.

See the doc string for this module.

__init__(filenameOrHeadings=None, delimiter=',', allowComments=True, stripWhite=True,
encoding=None, defaultType=None, usePickleCache=None)

append(obj)
Append an object to the table.

If obj is not a TableRecord, then one is created, passing the object to initialize the TableRecord. Therefore,
obj can be a TableRecord, list, dictionary or object. See TableRecord for details.

static canReadExcel()

commit()

createNameToIndexMap()

Create speed-up index.

Invoked by self to create the nameToIndexMap after the table’s headings have been read/initialized.

dictKeyedBy(key)
Return a dictionary containing the contents of the table.

The content is indexed by the particular key. This is useful for tables that have a column which represents
a unique key (such as a name, serial number, etc.).

filename()

hasHeading(name)

heading(index)

headings()

nameToIndexMap()

Speed-up index.

Table rows keep a reference to this map in order to speed up index-by-names (as in row[‘name’]).

numHeadings()

readExcel(worksheet=1, row=1, column=1)

readFile(file, delimiter=',', allowComments=True, stripWhite=True)

250 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

readFileNamed(filename, delimiter=',', allowComments=True, stripWhite=True, encoding=None,
worksheet=1, row=1, column=1)

readLines(lines, delimiter=',', allowComments=True, stripWhite=True)

readString(string, delimiter=',', allowComments=True, stripWhite=True)

recordsEqualTo(record)

save()

setHeadings(headings)
Set table headings.

Headings can be a list of strings (like [‘name’, ‘age:int’]) or a list of TableColumns or None.

writeFile(file)
Write the table out as a file.

This doesn’t write the column types (like int) back out.

It’s notable that a blank numeric value gets read as zero and written out that way. Also, values None are
written as blanks.

writeFileNamed(filename, encoding='utf-8')

exception MiscUtils.DataTable.DataTableError

Bases: Exception

Data table error.

__init__(*args, **kwargs)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class MiscUtils.DataTable.TableColumn(spec)
Bases: object

Representation of a table column.

A table column represents a column of the table including name and type. It does not contain the actual values
of the column. These are stored individually in the rows.

__init__(spec)
Initialize the table column.

The spec parameter is a string such as ‘name’ or ‘name:type’.

name()

setType(type_)
Set the type (by a string containing the name) of the heading.

Usually invoked by DataTable to set the default type for columns whose types were not specified.

type()

19.6. MiscUtils 251



Webware for Python 3, Release 3.0.9

valueForRawValue(value)
Set correct type for raw value.

The rawValue is typically a string or value already of the appropriate type. TableRecord invokes this method
to ensure that values (especially strings that come from files) are the correct types (e.g., ints are ints and
floats are floats).

class MiscUtils.DataTable.TableRecord(table, values=None, headings=None)
Bases: object

Representation of a table record.

__init__(table, values=None, headings=None)
Initialize table record.

Dispatches control to one of the other init methods based on the type of values. Values can be one of three
things:

1. A TableRecord

2. A list

3. A dictionary

4. Any object responding to hasValueForKey() and valueForKey().

asDict()

Return a dictionary whose key-values match the table record.

asList()

Return a sequence whose values are the same as the record’s.

The order of the sequence is the one defined by the table.

get(key, default=None)

has_key(key)

initFromDict(values)

initFromObject(obj)
Initialize from object.

The object is expected to response to hasValueForKey(name) and valueForKey(name) for each of the head-
ings in the table. It’s alright if the object returns False for hasValueForKey(). In that case, a “blank” value
is assumed (such as zero or an empty string). If hasValueForKey() returns True, then valueForKey() must
return a value.

initFromSequence(values)

items()

iteritems()

iterkeys()

itervalues()

keys()

valueForAttr(attr, default=<class 'MiscUtils.NoDefault'>)

252 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

valueForKey(key, default=<class 'MiscUtils.NoDefault'>)

values()

MiscUtils.DataTable.canReadExcel()

MiscUtils.DataTable.main(args=None)

19.6.5 DateInterval

DateInterval.py

Convert interval strings (in the form of 1w2d, etc) to seconds, and back again. Is not exactly about months or years
(leap years in particular).

Accepts (y)ear, (b)month, (w)eek, (d)ay, (h)our, (m)inute, (s)econd.

Exports only timeEncode and timeDecode functions.

MiscUtils.DateInterval.timeDecode(s)
Decode a number in the format 1h4d3m (1 hour, 3 days, 3 minutes).

Decode the format into a number of seconds.

MiscUtils.DateInterval.timeEncode(seconds)
Encode a number of seconds (representing a time interval).

Encode the number into a form like 2d1h3s.

19.6.6 DateParser

DateParser.py

Convert string representations of dates to Python datetime objects.

If installed, we will use the python-dateutil package to parse dates, otherwise we try to use the strptime function in the
Python standard library with several frequently used formats.

MiscUtils.DateParser.parseDate(s)
Return a date object corresponding to the given string.

MiscUtils.DateParser.parseDateTime(s)
Return a datetime object corresponding to the given string.

MiscUtils.DateParser.parseTime(s)
Return a time object corresponding to the given string.

19.6.7 DBPool

DBPool.py

Implements a pool of cached connections to a database for any DB-API 2 compliant database module. This should
result in a speedup for persistent applications like Webware. The pool of connections is threadsafe regardless of whether
the used DB-API 2 general has a threadsafety of 1 or 2.

For more information on the DB-API 2 specification, see PEP 249.

The idea behind DBPool is that it’s completely seamless, so once you have established your connection, use it just as
you would any other DB-API 2 compliant module. For example:

19.6. MiscUtils 253

https://www.python.org/dev/peps/pep-0249/


Webware for Python 3, Release 3.0.9

import pgdb # import used DB-API 2 module
from MiscUtils.DBPool import DBPool
dbpool = DBPool(pgdb, 5, host=..., database=..., user=..., ...)
db = dbpool.connection()

Now use “db” exactly as if it were a pgdb connection. It’s really just a proxy class.

db.close() will return the connection to the pool, not actually close it. This is so your existing code works nicely.

DBPool is actually intended to be a demonstration of concept not to be used in a productive environment. It is really
a very simple solution with several drawbacks. For instance, pooled database connections which have become invalid
are not automatically recovered. For a more sophisticated solution, please have a look at the DBUtils package.

CREDIT

• Contributed by Dan Green.

• Thread safety bug found by Tom Schwaller.

• Fixes by Geoff Talvola (thread safety in _threadsafe_get_connection()).

• Clean up by Chuck Esterbrook.

• Fix unthreadsafe functions which were leaking, Jay Love.

• Eli Green’s webware-discuss comments were lifted for additional docs.

• Coding and comment clean-up by Christoph Zwerschke.

class MiscUtils.DBPool.DBPool(dbapi, maxconnections, *args, **kwargs)
Bases: object

__init__(dbapi, maxconnections, *args, **kwargs)
Set up the database connection pool.

dbapi:
the DB-API 2 compliant module you want to use

maxconnections:
the number of connections cached in the pool

args, kwargs:
the parameters that shall be used to establish the database connections using dbapi.connect()

exception MiscUtils.DBPool.DBPoolError

Bases: Exception

General database pooling error.

__init__(*args, **kwargs)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception MiscUtils.DBPool.NotSupportedError

Bases: DBPoolError

Missing support from database module error.

__init__(*args, **kwargs)

254 Chapter 19. API Reference

https://webwareforpython.github.io/dbutils/


Webware for Python 3, Release 3.0.9

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class MiscUtils.DBPool.PooledConnection(pool, con)
Bases: object

A wrapper for database connections to help with DBPool.

You don’t normally deal with this class directly, but use DBPool to get new connections.

__init__(pool, con)

close()

Close the pooled connection.

19.6.8 DictForArgs

DictForArgs.py

See the doc string for the dictForArgs() function.

Also, there is a test suite in Tests/TestDictForArgs.py

MiscUtils.DictForArgs.DictForArgs(s)
Build dictionary from arguments.

Takes an input such as:

x=3
name="foo"
first='john' last='doe'
required border=3

And returns a dictionary representing the same. For keys that aren’t given an explicit value (such as ‘required’
above), the value is ‘1’.

All values are interpreted as strings. If you want ints and floats, you’ll have to convert them yourself.

This syntax is equivalent to what you find in HTML and close to other ML languages such as XML.

Returns {} for an empty string.

The informal grammar is:

(NAME [=NAME|STRING])*

Will raise DictForArgsError if the string is invalid.

See also: pyDictForArgs() and expandDictWithExtras() in this module.

exception MiscUtils.DictForArgs.DictForArgsError

Bases: Exception

Error when building dictionary from arguments.

__init__(*args, **kwargs)

args

19.6. MiscUtils 255



Webware for Python 3, Release 3.0.9

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

MiscUtils.DictForArgs.ExpandDictWithExtras(d, key='Extras', delKey=True, dictForArgs=<function
dictForArgs>)

Return a dictionary with the ‘Extras’ column expanded by dictForArgs().

For example, given:

{'Name': 'foo', 'Extras': 'x=1 y=2'}

The return value is:

{'Name': 'foo', 'x': '1', 'y': '2'}

The key argument controls what key in the dictionary is used to hold the extra arguments. The delKey argument
controls whether that key and its corresponding value are retained. The same dictionary may be returned if there
is no extras key. The most typical use of this function is to pass a row from a DataTable that was initialized from
a CSV file (e.g., a spreadsheet or tabular file). FormKit and MiddleKit both use CSV files and allow for an Extras
column to specify attributes that occur infrequently.

MiscUtils.DictForArgs.PyDictForArgs(s)
Build dictionary from arguments.

Takes an input such as:

x=3
name="foo"
first='john'; last='doe'
list=[1, 2, 3]; name='foo'

And returns a dictionary representing the same.

All values are interpreted as Python expressions. Any error in these expressions will raise the appropriate Python
exception. This syntax allows much more power than dictForArgs() since you can include lists, dictionaries,
actual ints and floats, etc.

This could also open the door to hacking your software if the input comes from a tainted source such as an HTML
form or an unprotected configuration file.

Returns {} for an empty string.

See also: dictForArgs() and expandDictWithExtras() in this module.

MiscUtils.DictForArgs.dictForArgs(s)
Build dictionary from arguments.

Takes an input such as:

x=3
name="foo"
first='john' last='doe'
required border=3

And returns a dictionary representing the same. For keys that aren’t given an explicit value (such as ‘required’
above), the value is ‘1’.

All values are interpreted as strings. If you want ints and floats, you’ll have to convert them yourself.

This syntax is equivalent to what you find in HTML and close to other ML languages such as XML.

256 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

Returns {} for an empty string.

The informal grammar is:

(NAME [=NAME|STRING])*

Will raise DictForArgsError if the string is invalid.

See also: pyDictForArgs() and expandDictWithExtras() in this module.

MiscUtils.DictForArgs.expandDictWithExtras(d, key='Extras', delKey=True, dictForArgs=<function
dictForArgs>)

Return a dictionary with the ‘Extras’ column expanded by dictForArgs().

For example, given:

{'Name': 'foo', 'Extras': 'x=1 y=2'}

The return value is:

{'Name': 'foo', 'x': '1', 'y': '2'}

The key argument controls what key in the dictionary is used to hold the extra arguments. The delKey argument
controls whether that key and its corresponding value are retained. The same dictionary may be returned if there
is no extras key. The most typical use of this function is to pass a row from a DataTable that was initialized from
a CSV file (e.g., a spreadsheet or tabular file). FormKit and MiddleKit both use CSV files and allow for an Extras
column to specify attributes that occur infrequently.

MiscUtils.DictForArgs.pyDictForArgs(s)
Build dictionary from arguments.

Takes an input such as:

x=3
name="foo"
first='john'; last='doe'
list=[1, 2, 3]; name='foo'

And returns a dictionary representing the same.

All values are interpreted as Python expressions. Any error in these expressions will raise the appropriate Python
exception. This syntax allows much more power than dictForArgs() since you can include lists, dictionaries,
actual ints and floats, etc.

This could also open the door to hacking your software if the input comes from a tainted source such as an HTML
form or an unprotected configuration file.

Returns {} for an empty string.

See also: dictForArgs() and expandDictWithExtras() in this module.

19.6. MiscUtils 257



Webware for Python 3, Release 3.0.9

19.6.9 Error

Universal error class.

class MiscUtils.Error.Error(obj, message, valueDict=None, **valueArgs)
Bases: dict

Universal error class.

An error is a dictionary-like object, containing a specific user-readable error message and an object associated
with it. Since Error inherits dict, other informative values can be arbitrarily attached to errors. For this reason,
subclassing Error is rare.

Example:

err = Error(user, 'Invalid password.')
err['time'] = time.time()
err['attempts'] = attempts

The object and message can be accessed via methods:

print(err.object())
print(err.message())

When creating errors, you can pass None for both object and message. You can also pass additional values,
which are then included in the error:

>>> err = Error(None, 'Too bad.', timestamp=time.time())
>>> err.keys()
['timestamp']

Or include the values as a dictionary, instead of keyword arguments:

>>> info = {'timestamp': time.time()}
>>> err = Error(None, 'Too bad.', info)

Or you could even do both if you needed to.

__init__(obj, message, valueDict=None, **valueArgs)
Initialize the error.

Takes the object the error occurred for, and the user-readable error message. The message should be self
sufficient such that if printed by itself, the user would understand it.

message()

Get the user-readable error message.

object()

Get the object the error occurred for.

258 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

19.6.10 Funcs

MiscUtils.Funcs

This module holds functions that don’t fit in anywhere else.

You can safely import * from MiscUtils.Funcs if you like.

MiscUtils.Funcs.asclocaltime(t=None)
Return a readable string of the current, local time.

Useful for time stamps in log files.

MiscUtils.Funcs.charWrap(s, width, hanging=0)
Word wrap a string.

Return a new version of the string word wrapped with the given width and hanging indent. The font is assumed
to be monospaced.

This can be useful for including text between <pre>...</pre> tags, since <pre> will not word wrap, and for
lengthy lines, will increase the width of a web page.

It can also be used to help delineate the entries in log-style output by passing hanging=4.

MiscUtils.Funcs.commas(number)
Insert commas in a number.

Return the given number as a string with commas to separate the thousands positions.

The number can be a float, int, long or string. Returns None for None.

MiscUtils.Funcs.excstr(e)
Return a string for the exception.

The string will be in the format that Python normally outputs in interactive shells and such:

<ExceptionName>: <message>
AttributeError: 'object' object has no attribute 'bar'

Neither str(e) nor repr(e) do that.

MiscUtils.Funcs.hostName()

Return the host name.

The name is taken first from the os environment and failing that, from the ‘hostname’ executable. May return
None if neither attempt succeeded. The environment keys checked are HOST and HOSTNAME, both upper and
lower case.

MiscUtils.Funcs.localIP(remote=('www.yahoo.com', 80), useCache=True)
Get the “public” address of the local machine.

This is the address which is connected to the general Internet.

This function connects to a remote HTTP server the first time it is invoked (or every time it is invoked with
useCache=0). If that is not acceptable, pass remote=None, but be warned that the result is less likely to be
externally visible.

Getting your local ip is actually quite complex. If this function is not serving your needs then you probably need
to think deeply about what you really want and how your network is really set up. Search comp.lang.python for
“local ip” for more information.

19.6. MiscUtils 259



Webware for Python 3, Release 3.0.9

MiscUtils.Funcs.localTimeDelta(t=None)
Return timedelta of local zone from GMT.

MiscUtils.Funcs.positiveId(obj)
Return id(obj) as a non-negative integer.

MiscUtils.Funcs.safeDescription(obj, what='what')
Return the repr() of obj and its class (or type) for help in debugging.

A major benefit here is that exceptions from repr() are consumed. This is important in places like “assert” where
you don’t want to lose the assertion exception in your attempt to get more information.

Example use:

assert isinstance(foo, Foo), safeDescription(foo)
print("foo:", safeDescription(foo)) # won't raise exceptions

# better output format:
assert isinstance(foo, Foo), safeDescription(foo, 'foo')
print(safeDescription(foo, 'foo'))

MiscUtils.Funcs.timestamp(t=None)
Return a dictionary whose keys give different versions of the timestamp.

The dictionary will contain the following timestamp versions:

'tuple': (year, month, day, hour, min, sec)
'pretty': 'YYYY-MM-DD HH:MM:SS'
'condensed': 'YYYYMMDDHHMMSS'
'dashed': 'YYYY-MM-DD-HH-MM-SS'

The focus is on the year, month, day, hour and second, with no additional information such as timezone or day
of year. This form of timestamp is often ideal for print statements, logs and filenames. If the current number of
seconds is not passed, then the current time is taken. The ‘pretty’ format is ideal for print statements, while the
‘condensed’ and ‘dashed’ formats are generally more appropriate for filenames.

MiscUtils.Funcs.uniqueId(forObject=None)
Generate an opaque identifier string made of 32 hex digits.

The string is practically guaranteed to be unique for each call.

If a randomness source is not found in the operating system, this function will use SHA-256 hashing with a
combination of pseudo-random numbers and time values to generate additional randomness. In this case, if an
object is passed, then its id() will be incorporated into the generation as well.

MiscUtils.Funcs.valueForString(s)
Return value for a string.

For a given string, returns the most appropriate Pythonic value such as None, a long, an int, a list, etc. If none of
those make sense, then returns the string as-is.

“None”, “True” and “False” are case-insensitive because there is already too much case sensitivity in computing,
damn it!

MiscUtils.Funcs.wordWrap(s, width=78)
Return a version of the string word wrapped to the given width.

260 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

19.6.11 MixIn

MiscUtils.MixIn.MixIn(pyClass, mixInClass, makeAncestor=False, mixInSuperMethods=False)
Mixes in the attributes of the mixInClass into the pyClass.

These attributes are typically methods (but don’t have to be). Note that private attributes, denoted by a double
underscore, are not mixed in. Collisions are resolved by the mixInClass’ attribute overwriting the pyClass’. This
gives mix-ins the power to override the behavior of the pyClass.

After using MixIn(), instances of the pyClass will respond to the messages of the mixInClass.

An assertion fails if you try to mix in a class with itself.

The pyClass will be given a new attribute mixInsForCLASSNAME which is a list of all mixInClass’ that have
ever been installed, in the order they were installed. You may find this useful for inspection and debugging.

You are advised to install your mix-ins at the start up of your program, prior to the creation of any objects. This
approach will result in less headaches. But like most things in Python, you’re free to do whatever you’re willing
to live with. :-)

There is a bitchin’ article in the Linux Journal, April 2001, “Using Mix-ins with Python” by Chuck Esterbrook,
which gives a thorough treatment of this topic.

An example, that resides in the Webware MiddleKit plug-in, is MiddleKit.Core.ModelUser.py, which install
mix-ins for SQL interfaces. Search for “MixIn(“.

If makeAncestor is True, then a different technique is employed: a new class is created and returned that is the
same as the given pyClass, but will have the mixInClass added as its first base class. Note that this is different
from the behavior in legacy Webware versions, where the __bases__ attribute of the pyClass was changed. You
probably don’t need to use this and if you do, be aware that your mix-in can no longer override attributes/methods
in pyClass.

If mixInSuperMethods is True, then support will be enabled for you to be able to call the original or “parent”
method from the mixed-in method. This is done like so:

class MyMixInClass:
def foo(self):

MyMixInClass.mixInSuperFoo(self) # call the original method
# now do whatever you want

19.6.12 NamedValueAccess

NamedValueAccess.py

NamedValueAccess provides functions for accessing Python objects by keys and named attributes. A ‘key’ is a single
identifier such as ‘foo’. A ‘name’ could be a key, or a qualified key, such as ‘foo.bar.boo’. Names are generally more
convenient and powerful, while the key-oriented function is more efficient and provide the atomic functionality that the
name-oriented function is built upon.

CREDIT

Chuck Esterbrook <echuck@mindspring.com> Tavis Rudd <tavis@calrudd.com>

exception MiscUtils.NamedValueAccess.NamedValueAccessError

Bases: LookupError

General named value access error.

__init__(*args, **kwargs)

19.6. MiscUtils 261

mailto:echuck@mindspring.com
mailto:tavis@calrudd.com


Webware for Python 3, Release 3.0.9

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception MiscUtils.NamedValueAccess.ValueForKeyError

Bases: NamedValueAccessError

No value for key found error.

__init__(*args, **kwargs)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

MiscUtils.NamedValueAccess.valueForKey(obj, key, default=<class 'MiscUtils.NoDefault'>)
Get the value of the object named by the given key.

This method returns the value with the following precedence:

1. Methods before non-methods

2. Attributes before keys (__getitem__)

3. Public things before private things (private being denoted by a preceding underscore)

Suppose key is ‘foo’, then this method returns one of these:

• obj.foo()

• obj._foo()

• obj.foo

• obj._foo

• obj[‘foo’]

• default # only if specified

If all of these fail, a ValueForKeyError is raised.

NOTES

• valueForKey() works on dictionaries and dictionary-like objects.

• See valueForName() which is a more advanced version of this function that allows multiple, qualified keys.

MiscUtils.NamedValueAccess.valueForName(obj, name, default=<class 'MiscUtils.NoDefault'>)
Get the value of the object that is named.

The name can use dotted notation to traverse through a network/graph of objects. Since this function relies on
valueForKey() for each individual component of the name, you should be familiar with the semantics of that
notation.

Example: valueForName(obj, ‘department.manager.salary’)

262 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

19.6.13 ParamFactory

ParamFactory.py

A factory for creating cached, parametrized class instances.

class MiscUtils.ParamFactory.ParamFactory(klass, **extraMethods)
Bases: object

__init__(klass, **extraMethods)

allInstances()

19.6.14 PickleCache

PickleCache.py

PickleCache provides tools for keeping fast-loading cached versions of files so that subsequent loads are faster. This is
similar to how Python silently caches .pyc files next to .py files.

The typical scenario is that you have a type of text file that gets “translated” to Pythonic data (dictionaries, tuples,
instances, ints, etc.). By caching the Python data on disk in pickle format, you can avoid the expensive translation on
subsequent reads of the file.

Two real life cases are MiscUtils.DataTable, which loads and represents comma-separated files, and the separate Mid-
dleKit plug-in which has an object model file. So for examples on using this module, load up the following files and
search for “Pickle”:

MiscUtils/DataTable.py
MiddleKit/Core/Model.py

The cached file is named the same as the original file with ‘.pickle.cache’ suffixed. The utility of ‘.pickle’ is to denote
the file format and the utility of ‘.cache’ is to provide *.cache as a simple pattern that can be removed, ignored by
backup scripts, etc.

The treatment of the cached file is silent and friendly just like Python’s approach to .pyc files. If it cannot be read
or written for various reasons (cache is out of date, permissions are bad, wrong python version, etc.), then it will be
silently ignored.

GRANULARITY

In constructing the test suite, I discovered that if the source file is newly written less than 1 second after the cached
file, then the fact that the source file is newer will not be detected and the cache will still be used. I believe this is a
limitation of the granularity of os.path.getmtime(). If anyone knows of a more granular solution, please let me know.

This would only be a problem in programmatic situations where the source file was rapidly being written and read. I
think that’s fairly rare.

SEE ALSO
https://docs.python.org/3/library/pickle.html

class MiscUtils.PickleCache.PickleCache

Bases: object

Abstract base class for PickleCacheReader and PickleCacheWriter.

picklePath(filename)

19.6. MiscUtils 263

https://docs.python.org/3/library/pickle.html


Webware for Python 3, Release 3.0.9

class MiscUtils.PickleCache.PickleCacheReader

Bases: PickleCache

picklePath(filename)

read(filename, pickleProtocol=None, source=None, verbose=None)
Read data from pickle cache.

Returns the data from the pickle cache version of the filename, if it can read. Otherwise returns None,
which also indicates that writePickleCache() should be subsequently called after the original file is read.

class MiscUtils.PickleCache.PickleCacheWriter

Bases: PickleCache

picklePath(filename)

write(data, filename, pickleProtocol=None, source=None, verbose=None)

MiscUtils.PickleCache.readPickleCache(filename, pickleProtocol=None, source=None, verbose=None)
Read data from pickle cache.

Returns the data from the pickle cache version of the filename, if it can read. Otherwise returns None, which
also indicates that writePickleCache() should be subsequently called after the original file is read.

MiscUtils.PickleCache.writePickleCache(data, filename, pickleProtocol=None, source=None,
verbose=None)

19.6.15 PickleRPC

PickleRPC.py

PickleRPC provides a Server object for connection to Pickle-RPC servers for the purpose of making requests and
receiving the responses.

>>> from MiscUtils.PickleRPC import Server
>>> server = Server('http://localhost:8080/Examples/PickleRPCExample')
>>> server.multiply(10,20)
200
>>> server.add(10,20)
30

See also: Server, PickleRPCServlet, Examples.PickleRPCExample

UNDER THE HOOD

Requests look like this:

{
'version': 1, # default
'action': 'call', # default
'methodName': 'NAME',
'args': (A, B, ...), # default = (,)
'keywords': {'A': A, 'B': B, ...} # default = {}

}

Only ‘methodName’ is required since that is the only key without a default value.

Responses look like this:

264 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

{
'timeReceived': N,
'timeReponded': M,
'value': V,
'exception': E,
'requestError': E,

}

‘timeReceived’ is the time the initial request was received. ‘timeResponded’ is the time at which the response was
finished, as close to transmission as possible. The times are expressed as number of seconds since the Epoch, e.g.,
time.time().

Value is whatever the method happened to return.

Exception may be ‘occurred’ to indicate that an exception occurred, the specific exception, such as “KeyError: foo” or
the entire traceback (as a string), at the discretion of the server. It will always be a non-empty string if it is present.

RequestError is an exception such as “Missing method in request.” (with no traceback) that indicates a problem with
the actual request received by the Pickle-RPC server.

Value, exception and requestError are all exclusive to each other.

SECURITY

Pickle RPC uses the SafeUnpickler class (in this module) to prevent unpickling of unauthorized classes. By default, it
doesn’t allow _any_ classes to be unpickled. You can override allowedGlobals() or findGlobal() in a subclass as needed
to allow specific class instances to be unpickled.

Note that both Transport in this package and PickleRPCServlet in the Webware main package are derived from Safe-
Unpickler.

CREDIT

The implementation of this module was taken directly from Python’s xmlrpclib and then transformed from XML-
orientation to Pickle-orientation.

The zlib compression was adapted from code by Skip Montanaro that I found here: http://manatee.mojam.com/~skip/
python/

exception MiscUtils.PickleRPC.Error

Bases: Exception

The abstract exception/error class for all PickleRPC errors.

__init__(*args, **kwargs)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception MiscUtils.PickleRPC.InvalidContentTypeError(headers, content)
Bases: ResponseError

Invalid content type error.

__init__(headers, content)

args

19.6. MiscUtils 265

http://manatee.mojam.com/~skip/python/
http://manatee.mojam.com/~skip/python/


Webware for Python 3, Release 3.0.9

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception MiscUtils.PickleRPC.ProtocolError(url, errcode, errmsg, headers)
Bases: ResponseError, ProtocolError

RPC protocol error.

__init__(url, errcode, errmsg, headers)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception MiscUtils.PickleRPC.RequestError

Bases: Error

Errors originally raised by the server caused by malformed requests.

__init__(*args, **kwargs)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception MiscUtils.PickleRPC.ResponseError

Bases: Error

Unhandled exceptions raised when the server was computing a response.

These will indicate errors such as:

• exception in the actual target method on the server

• malformed responses

• non “200 OK” status code responses

__init__(*args, **kwargs)

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class MiscUtils.PickleRPC.SafeTransport

Bases: Transport

Handle an HTTPS transaction to a Pickle-RPC server.

allowedGlobals()

Allowed class names.

Must return a list of (moduleName, klassName) tuples for all classes that you want to allow to be unpickled.

Example:

return [('datetime', 'date')]

Allows datetime.date instances to be unpickled.

266 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

findGlobal(module, klass)
Find class name.

load(file)
Unpickle a file.

loads(s)
Unpickle a string.

make_connection(host, port=None, key_file=None, cert_file=None)
Create an HTTPS connection object from a host descriptor.

parse_response(f )
Read response from input file and parse it.

parse_response_gzip(f )
Read response from input file, decompress it, and parse it.

request(host, handler, request_body, verbose=False, binary=False, compressed=False,
acceptCompressedResponse=False)

Issue a Pickle-RPC request.

send_content(connection, request_body, binary=False, compressed=False,
acceptCompressedResponse=False)

Send content.

send_host(connection, host)
Send host header.

send_request(connection, handler, request_body)
Send request.

send_user_agent(connection)
Send user-agent header.

user_agent = 'PickleRPC/1 (Webware for Python)'

class MiscUtils.PickleRPC.SafeUnpickler

Bases: object

Safe unpickler.

For security reasons, we don’t want to allow just anyone to unpickle anything. That can cause arbitrary code to
be executed. So this SafeUnpickler base class is used to control what can be unpickled. By default it doesn’t let
you unpickle any class instances at all, but you can create subclass that overrides allowedGlobals().

Note that the PickleRPCServlet class in the Webware package is derived from this class and uses its load() and
loads() methods to do all unpickling.

allowedGlobals()

Allowed class names.

Must return a list of (moduleName, klassName) tuples for all classes that you want to allow to be unpickled.

Example:

return [('datetime', 'date')]

Allows datetime.date instances to be unpickled.

19.6. MiscUtils 267



Webware for Python 3, Release 3.0.9

findGlobal(module, klass)
Find class name.

load(file)
Unpickle a file.

loads(s)
Unpickle a string.

class MiscUtils.PickleRPC.Server(uri, transport=None, verbose=False, binary=True,
compressRequest=True, acceptCompressedResponse=True)

Bases: object

uri [,options] -> a logical connection to an XML-RPC server

uri is the connection point on the server, given as scheme://host/target.

The standard implementation always supports the “http” scheme. If SSL socket support is available, it also
supports “https”.

If the target part and the slash preceding it are both omitted, “/PickleRPC” is assumed.

See the module doc string for more information.

__init__(uri, transport=None, verbose=False, binary=True, compressRequest=True,
acceptCompressedResponse=True)

Establish a “logical” server connection.

MiscUtils.PickleRPC.ServerProxy

alias of Server

class MiscUtils.PickleRPC.Transport

Bases: SafeUnpickler

Handle an HTTP transaction to a Pickle-RPC server.

allowedGlobals()

Allowed class names.

Must return a list of (moduleName, klassName) tuples for all classes that you want to allow to be unpickled.

Example:

return [('datetime', 'date')]

Allows datetime.date instances to be unpickled.

findGlobal(module, klass)
Find class name.

load(file)
Unpickle a file.

loads(s)
Unpickle a string.

make_connection(host, port=None)
Create an HTTP connection object from a host descriptor.

parse_response(f )
Read response from input file and parse it.

268 Chapter 19. API Reference



Webware for Python 3, Release 3.0.9

parse_response_gzip(f )
Read response from input file, decompress it, and parse it.

request(host, handler, request_body, verbose=False, binary=False, compressed=False,
acceptCompressedResponse=False)

Issue a Pickle-RPC request.

send_content(connection, request_body, binary=False, compressed=False,
acceptCompressedResponse=False)

Send content.

send_host(connection, host)
Send host header.

send_request(connection, handler, request_body)
Send request.

send_user_agent(connection)
Send user-agent header.

user_agent = 'PickleRPC/1 (Webware for Python)'

19.6. MiscUtils 269



Webware for Python 3, Release 3.0.9

270 Chapter 19. API Reference



CHAPTER

TWENTY

INDICES AND TABLES

• genindex

• modindex

• search

271



Webware for Python 3, Release 3.0.9

272 Chapter 20. Indices and tables



PYTHON MODULE INDEX

a
Application, 89

c
ConfigurableForServerSidePath, 95
Cookie, 97

e
ExceptionHandler, 98

h
HTTPContent, 102
HTTPExceptions, 106
HTTPRequest, 123
HTTPResponse, 129
HTTPServlet, 133

i
ImportManager, 135

j
JSONRPCServlet, 136

m
MiscUtils, 84
MiscUtils.Configurable, 243
MiscUtils.CSVJoiner, 245
MiscUtils.CSVParser, 245
MiscUtils.DataTable, 247
MiscUtils.DateInterval, 253
MiscUtils.DateParser, 253
MiscUtils.DBPool, 253
MiscUtils.DictForArgs, 255
MiscUtils.Error, 258
MiscUtils.Funcs, 259
MiscUtils.MixIn, 261
MiscUtils.NamedValueAccess, 261
MiscUtils.ParamFactory, 263
MiscUtils.PickleCache, 263
MiscUtils.PickleRPC, 264

p
Page, 140
PickleRPCServlet, 146
PlugIn, 149
Properties, 151
PSP, 65
PSP.BraceConverter, 190
PSP.Context, 191
PSP.Generators, 194
PSP.ParseEventHandler, 196
PSP.PSPCompiler, 199
PSP.PSPPage, 199
PSP.PSPParser, 205
PSP.PSPServletFactory, 207
PSP.PSPUtils, 208
PSP.ServletWriter, 209
PSP.StreamReader, 210

r
Request, 151
Response, 152
RPCServlet, 153

s
Servlet, 155
ServletFactory, 156
Session, 159
SessionDynamicStore, 161
SessionFileStore, 162
SessionMemcachedStore, 164
SessionMemoryStore, 165
SessionRedisStore, 167
SessionShelveStore, 168
SessionStore, 169
SidebarPage, 171

t
TaskKit, 76
TaskKit.Scheduler, 225
TaskKit.Task, 229
TaskKit.TaskHandler, 230
Transaction, 178

273



Webware for Python 3, Release 3.0.9

u
UnknownFileTypeServlet, 179
URLParser, 183
UserKit, 74
UserKit.HierRole, 211
UserKit.Role, 212
UserKit.RoleUser, 213
UserKit.RoleUserManager, 214
UserKit.RoleUserManagerMixIn, 216
UserKit.RoleUserManagerToFile, 216
UserKit.User, 219
UserKit.UserManager, 219
UserKit.UserManagerToFile, 222

w
WebUtils, 82
WebUtils.ExpansiveHTMLForException, 231
WebUtils.FieldStorage, 231
WebUtils.Funcs, 234
WebUtils.HTMLForException, 235
WebUtils.HTMLTag, 236
WebUtils.HTTPStatusCodes, 243
WSGIStreamOut, 186

x
XMLRPCServlet, 188

274 Python Module Index



INDEX

Symbols
__init__() (Application.Application method), 89
__init__() (Application.EndResponse method), 95
__init__() (ConfigurableForServerSide-

Path.ConfigurableForServerSidePath method),
96

__init__() (Cookie.Cookie method), 97
__init__() (ExceptionHandler.ExceptionHandler

method), 99
__init__() (HTTPContent.HTTPContent method), 102
__init__() (HTTPContent.HTTPContentError

method), 106
__init__() (HTTPExcep-

tions.HTTPAuthenticationRequired method),
106

__init__() (HTTPExceptions.HTTPBadRequest
method), 107

__init__() (HTTPExceptions.HTTPConflict method),
108

__init__() (HTTPExceptions.HTTPException method),
109

__init__() (HTTPExceptions.HTTPForbidden
method), 110

__init__() (HTTPExceptions.HTTPInsufficientStorage
method), 111

__init__() (HTTPExceptions.HTTPMethodNotAllowed
method), 112

__init__() (HTTPExceptions.HTTPMovedPermanently
method), 113

__init__() (HTTPExceptions.HTTPNotFound method),
114

__init__() (HTTPExceptions.HTTPNotImplemented
method), 115

__init__() (HTTPExcep-
tions.HTTPPreconditionFailed method),
116

__init__() (HTTPExceptions.HTTPRequestTimeout
method), 117

__init__() (HTTPExceptions.HTTPServerError
method), 118

__init__() (HTTPExcep-
tions.HTTPServiceUnavailable method),

119
__init__() (HTTPExceptions.HTTPSessionExpired

method), 120
__init__() (HTTPExceptions.HTTPTemporaryRedirect

method), 121
__init__() (HTTPExcep-

tions.HTTPUnsupportedMediaType method),
122

__init__() (HTTPRequest.HTTPRequest method), 123
__init__() (HTTPResponse.HTTPResponse method),

129
__init__() (HTTPServlet.HTTPServlet method), 133
__init__() (ImportManager.ImportManager method),

135
__init__() (JSONRPCServlet.JSONRPCServlet

method), 136
__init__() (MiscUtils.CSVParser.CSVParser method),

246
__init__() (MiscUtils.CSVParser.ParseError method),

246
__init__() (MiscUtils.Configurable.Configurable

method), 243
__init__() (MiscUtils.Configurable.ConfigurationError

method), 244
__init__() (MiscUtils.DBPool.DBPool method), 254
__init__() (MiscUtils.DBPool.DBPoolError method),

254
__init__() (MiscUtils.DBPool.NotSupportedError

method), 254
__init__() (MiscUtils.DBPool.PooledConnection

method), 255
__init__() (MiscUtils.DataTable.DataTable method),

250
__init__() (MiscUtils.DataTable.DataTableError

method), 251
__init__() (MiscUtils.DataTable.TableColumn

method), 251
__init__() (MiscUtils.DataTable.TableRecord

method), 252
__init__() (MiscUtils.DictForArgs.DictForArgsError

method), 255
__init__() (MiscUtils.Error.Error method), 258

275



Webware for Python 3, Release 3.0.9

__init__() (MiscUtils.NamedValueAccess.NamedValueAccessError
method), 261

__init__() (MiscUtils.NamedValueAccess.ValueForKeyError
method), 262

__init__() (MiscUtils.ParamFactory.ParamFactory
method), 263

__init__() (MiscUtils.PickleRPC.Error method), 265
__init__() (MiscUtils.PickleRPC.InvalidContentTypeError

method), 265
__init__() (MiscUtils.PickleRPC.ProtocolError

method), 266
__init__() (MiscUtils.PickleRPC.RequestError

method), 266
__init__() (MiscUtils.PickleRPC.ResponseError

method), 266
__init__() (MiscUtils.PickleRPC.Server method), 268
__init__() (PSP.BraceConverter.BraceConverter

method), 191
__init__() (PSP.Context.PSPCLContext method), 192
__init__() (PSP.Generators.CharDataGenerator

method), 194
__init__() (PSP.Generators.EndBlockGenerator

method), 194
__init__() (PSP.Generators.ExpressionGenerator

method), 194
__init__() (PSP.Generators.GenericGenerator

method), 194
__init__() (PSP.Generators.IncludeGenerator

method), 195
__init__() (PSP.Generators.InsertGenerator method),

195
__init__() (PSP.Generators.MethodEndGenerator

method), 195
__init__() (PSP.Generators.MethodGenerator

method), 195
__init__() (PSP.Generators.ScriptClassGenerator

method), 195
__init__() (PSP.Generators.ScriptFileGenerator

method), 195
__init__() (PSP.Generators.ScriptGenerator method),

196
__init__() (PSP.PSPCompiler.Compiler method), 199
__init__() (PSP.PSPPage.PSPPage method), 199
__init__() (PSP.PSPParser.PSPParser method), 205
__init__() (PSP.PSPServletFactory.PSPServletFactory

method), 207
__init__() (PSP.PSPUtils.PSPParserException

method), 208
__init__() (PSP.ParseEventHandler.ParseEventHandler

method), 196
__init__() (PSP.ServletWriter.ServletWriter method),

209
__init__() (PSP.StreamReader.Mark method), 210
__init__() (PSP.StreamReader.StreamReader method),

210
__init__() (Page.Page method), 140
__init__() (PickleRPCServlet.PickleRPCServlet

method), 147
__init__() (PlugIn.PlugIn method), 150
__init__() (PlugIn.PlugInError method), 150
__init__() (RPCServlet.RPCServlet method), 153
__init__() (Request.Request method), 151
__init__() (Response.Response method), 152
__init__() (Servlet.Servlet method), 155
__init__() (ServletFactory.PythonServletFactory

method), 156
__init__() (ServletFactory.ServletFactory method),

157
__init__() (Session.Session method), 159
__init__() (Session.SessionError method), 160
__init__() (SessionDynamic-

Store.SessionDynamicStore method), 161
__init__() (SessionFileStore.SessionFileStore

method), 162
__init__() (SessionMemcached-

Store.SessionMemcachedStore method),
164

__init__() (SessionMemoryStore.SessionMemoryStore
method), 165

__init__() (SessionRedisStore.SessionRedisStore
method), 167

__init__() (SessionShelveStore.SessionShelveStore
method), 168

__init__() (SessionStore.SessionStore method), 170
__init__() (SidebarPage.SidebarPage method), 171
__init__() (TaskKit.Scheduler.Scheduler method), 225
__init__() (TaskKit.Task.Task method), 229
__init__() (TaskKit.TaskHandler.TaskHandler

method), 230
__init__() (Transaction.Transaction method), 178
__init__() (URLParser.ContextParser method), 184
__init__() (URLParser.ServletFactoryManagerClass

method), 184
__init__() (URLParser.URLParameterParser method),

185
__init__() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
179

__init__() (UnknownFileType-
Servlet.UnknownFileTypeServletFactory
method), 182

__init__() (UserKit.HierRole.HierRole method), 211
__init__() (UserKit.Role.Role method), 212
__init__() (UserKit.RoleUser.RoleUser method), 213
__init__() (UserKit.RoleUserManager.RoleUserManager

method), 214
__init__() (UserKit.RoleUserManagerMixIn.RoleUserManagerMixIn

method), 216

276 Index



Webware for Python 3, Release 3.0.9

__init__() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 216

__init__() (UserKit.User.User method), 219
__init__() (UserKit.UserManager.UserManager

method), 221
__init__() (UserKit.UserManagerToFile.UserManagerToFile

method), 222
__init__() (WSGIStreamOut.InvalidCommandSequence

method), 186
__init__() (WSGIStreamOut.WSGIStreamOut

method), 187
__init__() (WebUtils.FieldStorage.FieldStorage

method), 232
__init__() (WebUtils.FieldStorage.MiniFieldStorage

method), 233
__init__() (WebUtils.HTMLTag.HTMLNotAllowedError

method), 236
__init__() (WebUtils.HTMLTag.HTMLReader

method), 237
__init__() (WebUtils.HTMLTag.HTMLTag method),

240
__init__() (WebUtils.HTMLTag.HTMLTagAttrLookupError

method), 241
__init__() (WebUtils.HTMLTag.HTMLTagError

method), 241
__init__() (WebUtils.HTMLTag.HTMLTagIncompleteError

method), 242
__init__() (WebUtils.HTMLTag.HTMLTagProcessingInstructionError

method), 242
__init__() (WebUtils.HTMLTag.HTMLTagUnbalancedError

method), 242
__init__() (WebUtils.HTMLTag.TagCanOnlyHaveConfig

method), 242
__init__() (WebUtils.HTMLTag.TagCannotHaveConfig

method), 242
__init__() (WebUtils.HTMLTag.TagConfig method),

242
__init__() (XMLRPCServlet.XMLRPCServlet

method), 188

A
absContextPath() (URLParser.ContextParser

method), 184
accept() (HTTPRequest.HTTPRequest method), 123
actions() (HTTPContent.HTTPContent method), 102
actions() (JSONRPCServlet.JSONRPCServlet

method), 136
actions() (Page.Page method), 140
actions() (PSP.PSPPage.PSPPage method), 199
actions() (SidebarPage.SidebarPage method), 171
activeUsers() (UserKit.RoleUserManager.RoleUserManager

method), 214
activeUsers() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 216

activeUsers() (UserKit.UserManager.UserManager
method), 221

activeUsers() (UserKit.UserManagerToFile.UserManagerToFile
method), 223

activeUserTimeout()
(UserKit.RoleUserManager.RoleUserManager
method), 214

activeUserTimeout()
(UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 216

activeUserTimeout()
(UserKit.UserManager.UserManager method),
221

activeUserTimeout()
(UserKit.UserManagerToFile.UserManagerToFile
method), 223

addActionOnDemand() (TaskKit.Scheduler.Scheduler
method), 225

addChild() (WebUtils.HTMLTag.HTMLTag method),
240

addCommandLineSetting() (in module MiscU-
tils.Configurable), 245

addContext() (Application.Application method), 89
addContext() (URLParser.ContextParser method), 184
addCookie() (HTTPResponse.HTTPResponse method),

129
addDailyAction() (TaskKit.Scheduler.Scheduler

method), 225
addGenerator() (PSP.ParseEventHandler.ParseEventHandler

method), 196
addPeriodicAction() (TaskKit.Scheduler.Scheduler

method), 225
addRole() (UserKit.RoleUserManager.RoleUserManager

method), 214
addRole() (UserKit.RoleUserManagerMixIn.RoleUserManagerMixIn

method), 216
addRole() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 216
addRoles() (UserKit.RoleUser.RoleUser method), 213
addServletFactory() (Application.Application static

method), 89
addServletFactory() (URL-

Parser.ServletFactoryManagerClass method),
185

addShutDownHandler() (Application.Application
method), 89

addTimedAction() (TaskKit.Scheduler.Scheduler
method), 226

addUser() (UserKit.RoleUserManager.RoleUserManager
method), 214

addUser() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 216

addUser() (UserKit.UserManager.UserManager
method), 221

Index 277



Webware for Python 3, Release 3.0.9

addUser() (UserKit.UserManagerToFile.UserManagerToFile
method), 223

advance() (PSP.StreamReader.StreamReader method),
210

allInstances() (MiscU-
tils.ParamFactory.ParamFactory method),
263

allow_none (XMLRPCServlet.XMLRPCServlet at-
tribute), 189

allowedGlobals() (MiscU-
tils.PickleRPC.SafeTransport method), 266

allowedGlobals() (MiscU-
tils.PickleRPC.SafeUnpickler method), 267

allowedGlobals() (MiscUtils.PickleRPC.Transport
method), 268

allowedGlobals() (PickleRPC-
Servlet.PickleRPCServlet method), 147

append() (MiscUtils.DataTable.DataTable method), 250
Application

module, 89
Application (class in Application), 89
application() (HTTPContent.HTTPContent method),

102
application() (in module URLParser), 186
application() (JSONRPCServlet.JSONRPCServlet

method), 136
application() (Page.Page method), 140
application() (PSP.PSPPage.PSPPage method), 199
application() (SessionDynamic-

Store.SessionDynamicStore method), 161
application() (SessionFileStore.SessionFileStore

method), 162
application() (SessionMemcached-

Store.SessionMemcachedStore method),
164

application() (SessionMemoryS-
tore.SessionMemoryStore method), 165

application() (SessionRedisStore.SessionRedisStore
method), 167

application() (SessionShelveStore.SessionShelveStore
method), 168

application() (SessionStore.SessionStore method),
170

application() (SidebarPage.SidebarPage method),
172

application() (Transaction.Transaction method), 178
args (Application.EndResponse attribute), 95
args (HTTPContent.HTTPContentError attribute), 106
args (HTTPExceptions.HTTPAuthenticationRequired at-

tribute), 107
args (HTTPExceptions.HTTPBadRequest attribute), 107
args (HTTPExceptions.HTTPConflict attribute), 108
args (HTTPExceptions.HTTPException attribute), 109
args (HTTPExceptions.HTTPForbidden attribute), 110

args (HTTPExceptions.HTTPInsufficientStorage at-
tribute), 111

args (HTTPExceptions.HTTPMethodNotAllowed at-
tribute), 112

args (HTTPExceptions.HTTPMovedPermanently at-
tribute), 113

args (HTTPExceptions.HTTPNotFound attribute), 114
args (HTTPExceptions.HTTPNotImplemented attribute),

115
args (HTTPExceptions.HTTPPreconditionFailed at-

tribute), 116
args (HTTPExceptions.HTTPRequestTimeout attribute),

117
args (HTTPExceptions.HTTPServerError attribute), 118
args (HTTPExceptions.HTTPServiceUnavailable at-

tribute), 119
args (HTTPExceptions.HTTPSessionExpired attribute),

120
args (HTTPExceptions.HTTPTemporaryRedirect at-

tribute), 121
args (HTTPExceptions.HTTPUnsupportedMediaType

attribute), 122
args (MiscUtils.Configurable.ConfigurationError

attribute), 244
args (MiscUtils.CSVParser.ParseError attribute), 247
args (MiscUtils.DataTable.DataTableError attribute),

251
args (MiscUtils.DBPool.DBPoolError attribute), 254
args (MiscUtils.DBPool.NotSupportedError attribute),

254
args (MiscUtils.DictForArgs.DictForArgsError at-

tribute), 255
args (MiscUtils.NamedValueAccess.NamedValueAccessError

attribute), 261
args (MiscUtils.NamedValueAccess.ValueForKeyError

attribute), 262
args (MiscUtils.PickleRPC.Error attribute), 265
args (MiscUtils.PickleRPC.InvalidContentTypeError at-

tribute), 265
args (MiscUtils.PickleRPC.ProtocolError attribute), 266
args (MiscUtils.PickleRPC.RequestError attribute), 266
args (MiscUtils.PickleRPC.ResponseError attribute),

266
args (PlugIn.PlugInError attribute), 151
args (PSP.PSPUtils.PSPParserException attribute), 208
args (Session.SessionError attribute), 160
args (WebUtils.HTMLTag.HTMLNotAllowedError

attribute), 236
args (WebUtils.HTMLTag.HTMLTagAttrLookupError

attribute), 241
args (WebUtils.HTMLTag.HTMLTagError attribute),

241
args (WebUtils.HTMLTag.HTMLTagIncompleteError at-

tribute), 242

278 Index



Webware for Python 3, Release 3.0.9

args (WebUtils.HTMLTag.HTMLTagProcessingInstructionError
attribute), 242

args (WebUtils.HTMLTag.HTMLTagUnbalancedError
attribute), 242

args (WSGIStreamOut.InvalidCommandSequence
attribute), 186

asclocaltime() (in module MiscUtils.Funcs), 259
asDict() (MiscUtils.DataTable.TableRecord method),

252
asList() (MiscUtils.DataTable.TableRecord method),

252
aspace (PSP.ParseEventHandler.ParseEventHandler at-

tribute), 196
assertNotCommitted() (HTTPRe-

sponse.HTTPResponse method), 129
attr() (WebUtils.HTMLTag.HTMLTag method), 240
attrs() (WebUtils.HTMLTag.HTMLTag method), 240
autoCommit() (WSGIStreamOut.WSGIStreamOut

method), 187
awake() (HTTPContent.HTTPContent method), 102
awake() (HTTPServlet.HTTPServlet method), 133
awake() (JSONRPCServlet.JSONRPCServlet method),

136
awake() (Page.Page method), 140
awake() (PickleRPCServlet.PickleRPCServlet method),

147
awake() (PSP.PSPPage.PSPPage method), 199
awake() (RPCServlet.RPCServlet method), 153
awake() (Servlet.Servlet method), 155
awake() (Session.Session method), 159
awake() (SidebarPage.SidebarPage method), 172
awake() (Transaction.Transaction method), 178
awake() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
180

awake() (XMLRPCServlet.XMLRPCServlet method),
189

B
basicServletName() (ExceptionHan-

dler.ExceptionHandler method), 99
beginProcessing() (PSP.ParseEventHandler.ParseEventHandler

method), 196
BraceConverter (class in PSP.BraceConverter), 191
buffer() (WSGIStreamOut.WSGIStreamOut method),

187
bufferSize() (WSGIStreamOut.WSGIStreamOut

method), 187
bufsize (WebUtils.FieldStorage.FieldStorage attribute),

232

C
cachedUserTimeout()

(UserKit.RoleUserManager.RoleUserManager

method), 214
cachedUserTimeout()

(UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 216

cachedUserTimeout()
(UserKit.UserManager.UserManager method),
221

cachedUserTimeout()
(UserKit.UserManagerToFile.UserManagerToFile
method), 223

call() (PickleRPCServlet.PickleRPCServlet method),
147

call() (RPCServlet.RPCServlet method), 153
call() (XMLRPCServlet.XMLRPCServlet method), 189
callMethodOfServlet() (Application.Application

method), 90
callMethodOfServlet() (HTTPContent.HTTPContent

method), 102
callMethodOfServlet() (JSONRPC-

Servlet.JSONRPCServlet method), 136
callMethodOfServlet() (Page.Page method), 140
callMethodOfServlet() (PSP.PSPPage.PSPPage

method), 199
callMethodOfServlet() (SidebarPage.SidebarPage

method), 172
canBeReused() (HTTPContent.HTTPContent method),

103
canBeReused() (HTTPServlet.HTTPServlet method),

133
canBeReused() (JSONRPCServlet.JSONRPCServlet

method), 136
canBeReused() (Page.Page method), 140
canBeReused() (PickleRPCServlet.PickleRPCServlet

method), 147
canBeReused() (PSP.PSPPage.PSPPage method), 199
canBeReused() (RPCServlet.RPCServlet method), 153
canBeReused() (Servlet.Servlet method), 155
canBeReused() (SidebarPage.SidebarPage method),

172
canBeReused() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
180

canBeReused() (XMLRPCServlet.XMLRPCServlet
method), 189

canBeThreaded() (HTTPContent.HTTPContent
method), 103

canBeThreaded() (HTTPServlet.HTTPServlet method),
134

canBeThreaded() (JSONRPCServlet.JSONRPCServlet
method), 136

canBeThreaded() (Page.Page method), 141
canBeThreaded() (PickleRPCServlet.PickleRPCServlet

method), 147
canBeThreaded() (PSP.PSPPage.PSPPage method),

Index 279



Webware for Python 3, Release 3.0.9

200
canBeThreaded() (RPCServlet.RPCServlet method),

153
canBeThreaded() (Servlet.Servlet method), 155
canBeThreaded() (SidebarPage.SidebarPage method),

172
canBeThreaded() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
180

canBeThreaded() (XMLRPCServlet.XMLRPCServlet
method), 189

canReadExcel() (in module MiscUtils.DataTable), 253
canReadExcel() (MiscUtils.DataTable.DataTable static

method), 250
CDATA_CONTENT_ELEMENTS (WebU-

tils.HTMLTag.HTMLReader attribute), 237
characters_written (WS-

GIStreamOut.InvalidCommandSequence
attribute), 186

CharDataGenerator (class in PSP.Generators), 194
charWrap() (in module MiscUtils.Funcs), 259
check_for_whole_start_tag() (WebU-

tils.HTMLTag.HTMLReader method), 237
checkAttributes() (in module PSP.PSPUtils), 208
checkDirective() (PSP.PSPParser.PSPParser

method), 205
checkEndBlock() (PSP.PSPParser.PSPParser method),

205
checker() (in module PSP.PSPParser), 206
checkExpression() (PSP.PSPParser.PSPParser

method), 205
checkForTextHavingOnlyGivenChars() (in module

PSP.ParseEventHandler), 198
checkInclude() (PSP.PSPParser.PSPParser method),

205
checkInsert() (PSP.PSPParser.PSPParser method),

205
checklist (PSP.PSPParser.PSPParser attribute), 206
checkMethod() (PSP.PSPParser.PSPParser method),

205
checkScript() (PSP.PSPParser.PSPParser method),

206
checkScriptClass() (PSP.PSPParser.PSPParser

method), 206
checkScriptFile() (PSP.PSPParser.PSPParser

method), 206
childAt() (WebUtils.HTMLTag.HTMLTag method),

240
children() (WebUtils.HTMLTag.HTMLTag method),

240
cleanStaleSessions() (SessionDynamic-

Store.SessionDynamicStore method), 161
cleanStaleSessions() (SessionFile-

Store.SessionFileStore method), 163

cleanStaleSessions() (SessionMemcached-
Store.SessionMemcachedStore method),
164

cleanStaleSessions() (SessionMemoryS-
tore.SessionMemoryStore method), 166

cleanStaleSessions() (SessionRedis-
Store.SessionRedisStore method), 167

cleanStaleSessions() (SessionShelve-
Store.SessionShelveStore method), 168

cleanStaleSessions() (SessionStore.SessionStore
method), 170

clear() (SessionDynamicStore.SessionDynamicStore
method), 161

clear() (SessionFileStore.SessionFileStore method),
163

clear() (SessionMemcached-
Store.SessionMemcachedStore method),
164

clear() (SessionMemoryStore.SessionMemoryStore
method), 166

clear() (SessionRedisStore.SessionRedisStore method),
167

clear() (SessionShelveStore.SessionShelveStore
method), 168

clear() (SessionStore.SessionStore method), 170
clear() (WSGIStreamOut.WSGIStreamOut method),

187
clear_cdata_mode() (WebU-

tils.HTMLTag.HTMLReader method), 237
clearCache() (UserKit.RoleUserManager.RoleUserManager

method), 214
clearCache() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 216
clearCache() (UserKit.UserManager.UserManager

method), 221
clearCache() (UserKit.UserManagerToFile.UserManagerToFile

method), 223
clearCookies() (HTTPResponse.HTTPResponse

method), 130
clearFileCache() (PSP.PSPServletFactory.PSPServletFactory

method), 207
clearHeaders() (HTTPResponse.HTTPResponse

method), 130
clearRoles() (UserKit.RoleUserManager.RoleUserManager

method), 214
clearRoles() (UserKit.RoleUserManagerMixIn.RoleUserManagerMixIn

method), 216
clearRoles() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
clearTransaction() (HTTPRequest.HTTPRequest

method), 123
clearTransaction() (HTTPResponse.HTTPResponse

method), 130
clearTransaction() (Request.Request method), 151

280 Index



Webware for Python 3, Release 3.0.9

clearTransaction() (Response.Response method),
152

close() (HTTPContent.HTTPContent method), 103
close() (HTTPServlet.HTTPServlet method), 134
close() (JSONRPCServlet.JSONRPCServlet method),

136
close() (MiscUtils.DBPool.PooledConnection method),

255
close() (Page.Page method), 141
close() (PickleRPCServlet.PickleRPCServlet method),

147
close() (PSP.PSPPage.PSPPage method), 200
close() (PSP.ServletWriter.ServletWriter method), 209
close() (RPCServlet.RPCServlet method), 153
close() (Servlet.Servlet method), 155
close() (SidebarPage.SidebarPage method), 172
close() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
180

close() (WebUtils.HTMLTag.HTMLReader method),
237

close() (WSGIStreamOut.WSGIStreamOut method),
187

close() (XMLRPCServlet.XMLRPCServlet method),
189

closeBrace() (PSP.BraceConverter.BraceConverter
method), 191

closed() (WSGIStreamOut.WSGIStreamOut method),
187

closedBy() (WebUtils.HTMLTag.HTMLTag method),
240

code() (HTTPExceptions.HTTPAuthenticationRequired
method), 107

code() (HTTPExceptions.HTTPBadRequest method),
108

code() (HTTPExceptions.HTTPConflict method), 108
code() (HTTPExceptions.HTTPException method), 109
code() (HTTPExceptions.HTTPForbidden method), 110
code() (HTTPExceptions.HTTPInsufficientStorage

method), 111
code() (HTTPExceptions.HTTPMethodNotAllowed

method), 112
code() (HTTPExceptions.HTTPMovedPermanently

method), 113
code() (HTTPExceptions.HTTPNotFound method), 114
code() (HTTPExceptions.HTTPNotImplemented

method), 115
code() (HTTPExceptions.HTTPPreconditionFailed

method), 116
code() (HTTPExceptions.HTTPRequestTimeout

method), 117
code() (HTTPExceptions.HTTPServerError method),

118
code() (HTTPExceptions.HTTPServiceUnavailable

method), 119
code() (HTTPExceptions.HTTPSessionExpired

method), 120
code() (HTTPExceptions.HTTPTemporaryRedirect

method), 121
code() (HTTPExceptions.HTTPUnsupportedMediaType

method), 122
codeMessage() (HTTPExcep-

tions.HTTPAuthenticationRequired method),
107

codeMessage() (HTTPExceptions.HTTPBadRequest
method), 108

codeMessage() (HTTPExceptions.HTTPConflict
method), 108

codeMessage() (HTTPExceptions.HTTPException
method), 110

codeMessage() (HTTPExceptions.HTTPForbidden
method), 110

codeMessage() (HTTPExcep-
tions.HTTPInsufficientStorage method),
111

codeMessage() (HTTPExcep-
tions.HTTPMethodNotAllowed method),
112

codeMessage() (HTTPExcep-
tions.HTTPMovedPermanently method),
113

codeMessage() (HTTPExceptions.HTTPNotFound
method), 114

codeMessage() (HTTPExcep-
tions.HTTPNotImplemented method), 115

codeMessage() (HTTPExcep-
tions.HTTPPreconditionFailed method),
116

codeMessage() (HTTPExcep-
tions.HTTPRequestTimeout method), 117

codeMessage() (HTTPExceptions.HTTPServerError
method), 118

codeMessage() (HTTPExcep-
tions.HTTPServiceUnavailable method),
119

codeMessage() (HTTPExceptions.HTTPSessionExpired
method), 120

codeMessage() (HTTPExcep-
tions.HTTPTemporaryRedirect method),
121

codeMessage() (HTTPExcep-
tions.HTTPUnsupportedMediaType method),
122

commandLineConfig() (Application.Application
method), 90

commandLineConfig() (ConfigurableForServerSide-
Path.ConfigurableForServerSidePath method),
96

Index 281



Webware for Python 3, Release 3.0.9

commandLineConfig() (MiscU-
tils.Configurable.Configurable method),
243

commandLineConfig() (UnknownFileType-
Servlet.UnknownFileTypeServlet method),
180

commandLineSetting() (in module MiscU-
tils.Configurable), 245

commas() (in module MiscUtils.Funcs), 259
comment() (Cookie.Cookie method), 97
commentCheck() (PSP.PSPParser.PSPParser method),

206
commit() (HTTPResponse.HTTPResponse method), 130
commit() (MiscUtils.DataTable.DataTable method), 250
commit() (WSGIStreamOut.WSGIStreamOut method),

187
committed() (WSGIStreamOut.WSGIStreamOut

method), 187
compile() (PSP.PSPCompiler.Compiler method), 199
Compiler (class in PSP.PSPCompiler), 199
computeClassName() (PSP.PSPServletFactory.PSPServletFactory

method), 207
computeTagContainmentConfig() (WebU-

tils.HTMLTag.HTMLReader method), 237
config() (Application.Application method), 90
config() (ConfigurableForServerSide-

Path.ConfigurableForServerSidePath method),
96

config() (MiscUtils.Configurable.Configurable
method), 243

config() (UnknownFileType-
Servlet.UnknownFileTypeServlet method),
180

configFilename() (Application.Application method),
90

configFilename() (ConfigurableForServerSide-
Path.ConfigurableForServerSidePath method),
96

configFilename() (MiscU-
tils.Configurable.Configurable method),
243

configFilename() (UnknownFileType-
Servlet.UnknownFileTypeServlet method),
180

configName() (Application.Application method), 90
configName() (ConfigurableForServerSide-

Path.ConfigurableForServerSidePath method),
96

configName() (MiscUtils.Configurable.Configurable
method), 244

configName() (UnknownFileType-
Servlet.UnknownFileTypeServlet method),
180

configReplacementValues() (Applica-

tion.Application method), 90
configReplacementValues() (Con-

figurableForServerSide-
Path.ConfigurableForServerSidePath method),
96

configReplacementValues() (MiscU-
tils.Configurable.Configurable method),
244

configReplacementValues() (UnknownFileType-
Servlet.UnknownFileTypeServlet method),
180

Configurable (class in MiscUtils.Configurable), 243
ConfigurableForServerSidePath

module, 95
ConfigurableForServerSidePath (class in Config-

urableForServerSidePath), 95
ConfigurationError, 244
contextName() (HTTPRequest.HTTPRequest method),

123
ContextParser (class in URLParser), 184
contextPath() (HTTPRequest.HTTPRequest method),

123
contexts() (Application.Application method), 90
Cookie

module, 97
Cookie (class in Cookie), 97
cookie() (HTTPRequest.HTTPRequest method), 123
cookie() (HTTPResponse.HTTPResponse method), 130
cookies() (HTTPRequest.HTTPRequest method), 123
cookies() (HTTPResponse.HTTPResponse method),

130
cornerTitle() (SidebarPage.SidebarPage method),

172
createNameToIndexMap() (MiscU-

tils.DataTable.DataTable method), 250
createRequestForDict() (Application.Application

static method), 90
createSessionForTransaction() (Applica-

tion.Application method), 90
createSessionWithID() (Application.Application

method), 90
createUser() (UserKit.RoleUserManager.RoleUserManager

method), 214
createUser() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
createUser() (UserKit.UserManager.UserManager

method), 221
createUser() (UserKit.UserManagerToFile.UserManagerToFile

method), 223
creationTime() (Session.Session method), 159
creationTime() (UserKit.RoleUser.RoleUser method),

213
creationTime() (UserKit.User.User method), 219
CSVParser (class in MiscUtils.CSVParser), 245

282 Index



Webware for Python 3, Release 3.0.9

D
daemon (TaskKit.Scheduler.Scheduler property), 226
DataTable (class in MiscUtils.DataTable), 250
DataTableError, 251
DBPool (class in MiscUtils.DBPool), 254
DBPoolError, 254
decoder() (SessionDynamicStore.SessionDynamicStore

method), 161
decoder() (SessionFileStore.SessionFileStore method),

163
decoder() (SessionMemcached-

Store.SessionMemcachedStore method),
164

decoder() (SessionMemoryStore.SessionMemoryStore
method), 166

decoder() (SessionRedisStore.SessionRedisStore
method), 167

decoder() (SessionShelveStore.SessionShelveStore
method), 168

decoder() (SessionStore.SessionStore method), 170
decoder() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
decoder() (UserKit.UserManagerToFile.UserManagerToFile

method), 223
defaultAction() (HTTPContent.HTTPContent

method), 103
defaultAction() (JSONRPCServlet.JSONRPCServlet

method), 136
defaultAction() (Page.Page method), 141
defaultAction() (PSP.PSPPage.PSPPage method),

200
defaultAction() (SidebarPage.SidebarPage method),

172
defaultConfig() (Application.Application method), 90
defaultConfig() (ConfigurableForServerSide-

Path.ConfigurableForServerSidePath method),
96

defaultConfig() (MiscU-
tils.Configurable.Configurable method),
244

defaultConfig() (UnknownFileType-
Servlet.UnknownFileTypeServlet method),
180

defaults (PSP.ParseEventHandler.ParseEventHandler
attribute), 196

delCookie() (HTTPResponse.HTTPResponse method),
130

delete() (Cookie.Cookie method), 97
delField() (HTTPRequest.HTTPRequest method), 123
delHeader() (HTTPResponse.HTTPResponse method),

130
deliver() (HTTPResponse.HTTPResponse method),

130
deliver() (Response.Response method), 152

delModules() (ImportManager.ImportManager
method), 135

delOnDemand() (TaskKit.Scheduler.Scheduler method),
226

delRole() (UserKit.RoleUserManager.RoleUserManager
method), 214

delRole() (UserKit.RoleUserManagerMixIn.RoleUserManagerMixIn
method), 216

delRole() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 217

delRunning() (TaskKit.Scheduler.Scheduler method),
226

delScheduled() (TaskKit.Scheduler.Scheduler method),
226

delValue() (Session.Session method), 159
demandTask() (TaskKit.Scheduler.Scheduler method),

226
description() (HTTPExcep-

tions.HTTPAuthenticationRequired method),
107

description() (HTTPExceptions.HTTPBadRequest
method), 108

description() (HTTPExceptions.HTTPConflict
method), 109

description() (HTTPExceptions.HTTPException
method), 110

description() (HTTPExceptions.HTTPForbidden
method), 111

description() (HTTPExcep-
tions.HTTPInsufficientStorage method),
111

description() (HTTPExcep-
tions.HTTPMethodNotAllowed method),
112

description() (HTTPExcep-
tions.HTTPMovedPermanently method),
113

description() (HTTPExceptions.HTTPNotFound
method), 114

description() (HTTPExcep-
tions.HTTPNotImplemented method), 115

description() (HTTPExcep-
tions.HTTPPreconditionFailed method),
116

description() (HTTPExcep-
tions.HTTPRequestTimeout method), 117

description() (HTTPExceptions.HTTPServerError
method), 118

description() (HTTPExcep-
tions.HTTPServiceUnavailable method),
119

description() (HTTPExceptions.HTTPSessionExpired
method), 120

description() (HTTPExcep-

Index 283



Webware for Python 3, Release 3.0.9

tions.HTTPTemporaryRedirect method),
121

description() (HTTPExcep-
tions.HTTPUnsupportedMediaType method),
122

description() (UserKit.HierRole.HierRole method),
211

description() (UserKit.Role.Role method), 212
development() (Application.Application method), 91
DictForArgs() (in module MiscUtils.DictForArgs), 255
dictForArgs() (in module MiscUtils.DictForArgs), 256
DictForArgsError, 255
dictKeyedBy() (MiscUtils.DataTable.DataTable

method), 250
die() (Transaction.Transaction method), 178
directiveHandlers (PSP.ParseEventHandler.ParseEventHandler

attribute), 196
directory() (PlugIn.PlugIn method), 150
disable() (TaskKit.TaskHandler.TaskHandler method),

230
disableTask() (TaskKit.Scheduler.Scheduler method),

226
dispatchRawRequest() (Application.Application

method), 91
displayError() (HTTPResponse.HTTPResponse

method), 130
disposition (WebUtils.FieldStorage.MiniFieldStorage

attribute), 233
disposition_options (WebU-

tils.FieldStorage.MiniFieldStorage attribute),
233

docType() (in module ExceptionHandler), 102
domain() (Cookie.Cookie method), 97
dump() (Transaction.Transaction method), 178
dumpWithHighestProtocol() (in module Session-

Store), 171
duration() (Transaction.Transaction method), 178

E
emailException() (ExceptionHan-

dler.ExceptionHandler method), 99
emptyTags() (WebUtils.HTMLTag.HTMLReader

method), 237
enable() (TaskKit.TaskHandler.TaskHandler method),

230
enableTask() (TaskKit.Scheduler.Scheduler method),

226
encoder() (SessionDynamicStore.SessionDynamicStore

method), 161
encoder() (SessionFileStore.SessionFileStore method),

163
encoder() (SessionMemcached-

Store.SessionMemcachedStore method),
164

encoder() (SessionMemoryStore.SessionMemoryStore
method), 166

encoder() (SessionRedisStore.SessionRedisStore
method), 167

encoder() (SessionShelveStore.SessionShelveStore
method), 168

encoder() (SessionStore.SessionStore method), 170
encoder() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
encoder() (UserKit.UserManagerToFile.UserManagerToFile

method), 223
encounteredTag() (WebU-

tils.HTMLTag.TagCannotHaveConfig method),
242

encounteredTag() (WebU-
tils.HTMLTag.TagCanOnlyHaveConfig
method), 242

encounteredTag() (WebUtils.HTMLTag.TagConfig
method), 242

EndBlockGenerator (class in PSP.Generators), 194
endProcessing() (PSP.ParseEventHandler.ParseEventHandler

method), 196
endQuotedField() (MiscUtils.CSVParser.CSVParser

method), 246
EndResponse, 95
endResponse() (HTTPContent.HTTPContent static

method), 103
endResponse() (JSONRPCServlet.JSONRPCServlet

static method), 137
endResponse() (Page.Page static method), 141
endResponse() (PSP.PSPPage.PSPPage static method),

200
endResponse() (SidebarPage.SidebarPage static

method), 172
endTime() (HTTPResponse.HTTPResponse method),

130
endTime() (Response.Response method), 152
environ() (HTTPRequest.HTTPRequest method), 123
errno (WSGIStreamOut.InvalidCommandSequence at-

tribute), 186
Error, 265
Error (class in MiscUtils.Error), 258
error() (Transaction.Transaction method), 178
error() (WebUtils.HTMLTag.HTMLReader method),

237
errorOccurred() (Transaction.Transaction method),

178
errorPage() (Application.Application method), 91
errorPageFilename() (ExceptionHan-

dler.ExceptionHandler method), 99
examplePages() (PlugIn.PlugIn method), 150
examplePagesContext() (PlugIn.PlugIn method), 150
ExceptionHandler

module, 98

284 Index



Webware for Python 3, Release 3.0.9

ExceptionHandler (class in ExceptionHandler), 98
excstr() (in module MiscUtils.Funcs), 259
ExpandDictWithExtras() (in module MiscU-

tils.DictForArgs), 256
expandDictWithExtras() (in module MiscU-

tils.DictForArgs), 257
ExpansiveHTMLForException() (in module WebU-

tils.ExpansiveHTMLForException), 231
expansiveHTMLForException() (in module WebU-

tils.ExpansiveHTMLForException), 231
expires() (Cookie.Cookie method), 97
expiring() (Session.Session method), 159
exposedMethods() (JSONRPC-

Servlet.JSONRPCServlet method), 137
exposedMethods() (PickleRPC-

Servlet.PickleRPCServlet method), 147
exposedMethods() (RPCServlet.RPCServlet method),

153
exposedMethods() (XMLRPCServlet.XMLRPCServlet

method), 189
ExpressionGenerator (class in PSP.Generators), 194
extendEmptyTags() (WebU-

tils.HTMLTag.HTMLReader method), 237
extendsHandler() (PSP.ParseEventHandler.ParseEventHandler

method), 197
extensions() (PSP.PSPServletFactory.PSPServletFactory

method), 207
extensions() (ServletFactory.PythonServletFactory

method), 156
extensions() (ServletFactory.ServletFactory method),

158
extensions() (UnknownFileType-

Servlet.UnknownFileTypeServletFactory
method), 182

externalId() (UserKit.RoleUser.RoleUser method),
213

externalId() (UserKit.User.User method), 219
extraURLPath() (HTTPRequest.HTTPRequest method),

123

F
factoryForFile() (URL-

Parser.ServletFactoryManagerClass method),
185

feed() (WebUtils.HTMLTag.HTMLReader method), 237
field() (HTTPRequest.HTTPRequest method), 124
fields() (HTTPRequest.HTTPRequest method), 124
FieldStorage (class in WebUtils.FieldStorage), 231
fieldStorage() (HTTPRequest.HTTPRequest method),

124
FieldStorageClass (WebU-

tils.FieldStorage.FieldStorage attribute),
232

file (WebUtils.FieldStorage.MiniFieldStorage at-
tribute), 233

fileEncoding() (PSP.PSPServletFactory.PSPServletFactory
method), 207

fileList() (ImportManager.ImportManager method),
135

filename (WebUtils.FieldStorage.MiniFieldStorage at-
tribute), 233

filename (WSGIStreamOut.InvalidCommandSequence
attribute), 186

filename() (MiscUtils.DataTable.DataTable method),
250

filename() (UnknownFileType-
Servlet.UnknownFileTypeServlet method),
180

filename() (UserKit.UserManagerToFile.UserMixIn
method), 224

filename() (WebUtils.HTMLTag.HTMLReader
method), 238

filename2 (WSGIStreamOut.InvalidCommandSequence
attribute), 186

filenameForKey() (SessionFileStore.SessionFileStore
method), 163

fileUpdated() (ImportManager.ImportManager
method), 135

filterDictValue() (ExceptionHan-
dler.ExceptionHandler method), 99

filterValue() (ExceptionHandler.ExceptionHandler
method), 99

findGlobal() (MiscUtils.PickleRPC.SafeTransport
method), 266

findGlobal() (MiscUtils.PickleRPC.SafeUnpickler
method), 267

findGlobal() (MiscUtils.PickleRPC.Transport
method), 268

findGlobal() (PickleRPCServlet.PickleRPCServlet
method), 147

findServletForTransaction() (URL-
Parser.ContextParser method), 184

findServletForTransaction() (URL-
Parser.URLParameterParser method), 185

findServletForTransaction() (URL-
Parser.URLParser method), 186

findSpec() (ImportManager.ImportManager method),
135

flush() (HTTPResponse.HTTPResponse method), 130
flush() (WSGIStreamOut.WSGIStreamOut method),

188
flushCache() (PSP.PSPServletFactory.PSPServletFactory

method), 207
flushCache() (ServletFactory.PythonServletFactory

method), 156
flushCache() (ServletFactory.ServletFactory method),

158

Index 285



Webware for Python 3, Release 3.0.9

flushCache() (UnknownFileType-
Servlet.UnknownFileTypeServletFactory
method), 182

flushCharData() (PSP.PSPParser.PSPParser method),
206

formatterHandler() (PSP.ParseEventHandler.ParseEventHandler
method), 197

forward() (Application.Application method), 91
forward() (HTTPContent.HTTPContent method), 103
forward() (JSONRPCServlet.JSONRPCServlet

method), 137
forward() (Page.Page method), 141
forward() (PSP.PSPPage.PSPPage method), 200
forward() (SidebarPage.SidebarPage method), 172

G
generate() (PSP.Generators.CharDataGenerator

method), 194
generate() (PSP.Generators.EndBlockGenerator

method), 194
generate() (PSP.Generators.ExpressionGenerator

method), 194
generate() (PSP.Generators.IncludeGenerator

method), 195
generate() (PSP.Generators.InsertGenerator method),

195
generate() (PSP.Generators.MethodEndGenerator

method), 195
generate() (PSP.Generators.MethodGenerator

method), 195
generate() (PSP.Generators.ScriptClassGenerator

method), 195
generate() (PSP.Generators.ScriptFileGenerator

method), 195
generate() (PSP.Generators.ScriptGenerator method),

196
generateAll() (PSP.ParseEventHandler.ParseEventHandler

method), 197
generateChunk() (PSP.Generators.CharDataGenerator

method), 194
generateDeclarations()

(PSP.ParseEventHandler.ParseEventHandler
method), 197

generateFooter() (PSP.ParseEventHandler.ParseEventHandler
method), 197

generateHeader() (PSP.ParseEventHandler.ParseEventHandler
method), 197

generateInitPSP() (PSP.ParseEventHandler.ParseEventHandler
method), 197

generateMainMethod()
(PSP.ParseEventHandler.ParseEventHandler
method), 197

GenericGenerator (class in PSP.Generators), 194
get() (MiscUtils.DataTable.TableRecord method), 252

get() (SessionDynamicStore.SessionDynamicStore
method), 161

get() (SessionFileStore.SessionFileStore method), 163
get() (SessionMemcached-

Store.SessionMemcachedStore method),
164

get() (SessionMemoryStore.SessionMemoryStore
method), 166

get() (SessionRedisStore.SessionRedisStore method),
167

get() (SessionShelveStore.SessionShelveStore method),
169

get() (SessionStore.SessionStore method), 170
get_starttag_text() (WebU-

tils.HTMLTag.HTMLReader method), 238
getBaseUri() (PSP.Context.PSPCLContext method),

192
getChars() (PSP.StreamReader.StreamReader method),

210
getClassPath() (PSP.Context.PSPCLContext method),

192
getClassPath() (PSP.Context.PSPContext method),

193
getExpr() (in module PSP.PSPUtils), 208
getFile() (PSP.StreamReader.Mark method), 210
getFile() (PSP.StreamReader.StreamReader method),

210
getfirst() (WebUtils.FieldStorage.FieldStorage

method), 232
getFullClassName() (PSP.Context.PSPCLContext

method), 192
getFullClassName() (PSP.Context.PSPContext

method), 193
getFullPspFileName() (PSP.Context.PSPCLContext

method), 192
getlist() (WebUtils.FieldStorage.FieldStorage

method), 232
getName() (TaskKit.Scheduler.Scheduler method), 226
getOutputDirectory() (PSP.Context.PSPCLContext

method), 192
getOutputDirectory() (PSP.Context.PSPContext

method), 193
getpos() (WebUtils.HTMLTag.HTMLReader method),

238
getPspFileName() (PSP.Context.PSPCLContext

method), 192
getPythonFileEncoding()

(PSP.Context.PSPCLContext method), 192
getPythonFileEncoding() (PSP.Context.PSPContext

method), 193
getPythonFileName() (PSP.Context.PSPCLContext

method), 192
getPythonFileName() (PSP.Context.PSPContext

method), 193

286 Index



Webware for Python 3, Release 3.0.9

getReader() (PSP.Context.PSPCLContext method), 192
getReader() (PSP.Context.PSPContext method), 193
getReloader() (ImportManager.ImportManager

method), 135
getServletClassName() (PSP.Context.PSPCLContext

method), 192
getServletClassName() (PSP.Context.PSPContext

method), 193
getServletWriter() (PSP.Context.PSPCLContext

method), 192
getvalue() (WebUtils.FieldStorage.FieldStorage

method), 232
getWriter() (PSP.Context.PSPCLContext method), 192
getWriter() (PSP.Context.PSPContext method), 193
goahead() (WebUtils.HTMLTag.HTMLReader method),

238
gobbleWhitespace() (PSP.ParseEventHandler.ParseEventHandler

method), 197
gobbleWhitespaceHandler()

(PSP.ParseEventHandler.ParseEventHandler
method), 197

H
handle() (TaskKit.Task.Task method), 229
handle_charref() (WebUtils.HTMLTag.HTMLReader

method), 238
handle_comment() (WebUtils.HTMLTag.HTMLReader

method), 238
handle_data() (WebUtils.HTMLTag.HTMLReader

method), 238
handle_decl() (WebUtils.HTMLTag.HTMLReader

method), 238
handle_endtag() (WebUtils.HTMLTag.HTMLReader

method), 238
handle_entityref() (WebU-

tils.HTMLTag.HTMLReader method), 238
handle_pi() (WebUtils.HTMLTag.HTMLReader

method), 238
handle_startendtag() (WebU-

tils.HTMLTag.HTMLReader method), 238
handle_starttag() (WebU-

tils.HTMLTag.HTMLReader method), 238
handleAction() (HTTPContent.HTTPContent

method), 103
handleAction() (JSONRPCServlet.JSONRPCServlet

method), 137
handleAction() (Page.Page method), 141
handleAction() (PSP.PSPPage.PSPPage method), 200
handleAction() (SidebarPage.SidebarPage method),

172
handleCharData() (PSP.ParseEventHandler.ParseEventHandler

method), 197
handleComment() (PSP.ParseEventHandler.ParseEventHandler

method), 197

handleDirective() (PSP.ParseEventHandler.ParseEventHandler
method), 197

handleEndBlock() (PSP.ParseEventHandler.ParseEventHandler
method), 197

handleException() (Application.Application method),
91

handleException() (PickleRPC-
Servlet.PickleRPCServlet static method),
147

handleException() (RPCServlet.RPCServlet static
method), 153

handleException() (XMLRPCServlet.XMLRPCServlet
static method), 189

handleExceptionInTransaction() (Applica-
tion.Application method), 91

handleExpression() (PSP.ParseEventHandler.ParseEventHandler
method), 197

handleInclude() (PSP.ParseEventHandler.ParseEventHandler
method), 197

handleInsert() (PSP.ParseEventHandler.ParseEventHandler
method), 197

handleMethod() (PSP.ParseEventHandler.ParseEventHandler
method), 197

handleMethodEnd() (PSP.ParseEventHandler.ParseEventHandler
method), 197

handleMissingPathSession() (Applica-
tion.Application method), 91

handlePathSession() (Application.Application
method), 91

handleQuote() (PSP.BraceConverter.BraceConverter
method), 191

handleScript() (PSP.ParseEventHandler.ParseEventHandler
method), 198

handleScriptClass()
(PSP.ParseEventHandler.ParseEventHandler
method), 198

handleScriptFile() (PSP.ParseEventHandler.ParseEventHandler
method), 198

handleUnnecessaryPathSession() (Applica-
tion.Application method), 91

has_key() (MiscUtils.DataTable.TableRecord method),
252

has_key() (SessionDynamicStore.SessionDynamicStore
method), 161

has_key() (SessionFileStore.SessionFileStore method),
163

has_key() (SessionMemcached-
Store.SessionMemcachedStore method),
164

has_key() (SessionMemoryStore.SessionMemoryStore
method), 166

has_key() (SessionRedisStore.SessionRedisStore
method), 167

has_key() (SessionShelveStore.SessionShelveStore

Index 287



Webware for Python 3, Release 3.0.9

method), 169
has_key() (SessionStore.SessionStore method), 170
hasAttr() (WebUtils.HTMLTag.HTMLTag method),

240
hasContext() (Application.Application method), 91
hasCookie() (HTTPRequest.HTTPRequest method),

124
hasCookie() (HTTPResponse.HTTPResponse method),

131
hasExamplePages() (PlugIn.PlugIn method), 150
hasField() (HTTPRequest.HTTPRequest method), 124
hasHeader() (HTTPResponse.HTTPResponse method),

131
hasHeading() (MiscUtils.DataTable.DataTable

method), 250
hasMoreInput() (PSP.StreamReader.StreamReader

method), 210
hasOnDemand() (TaskKit.Scheduler.Scheduler method),

226
hasRole() (UserKit.RoleUserManager.RoleUserManager

method), 215
hasRole() (UserKit.RoleUserManagerMixIn.RoleUserManagerMixIn

method), 216
hasRole() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
hasRunning() (TaskKit.Scheduler.Scheduler method),

226
hasScheduled() (TaskKit.Scheduler.Scheduler method),

226
hasSeparator() (in module WebUtils.FieldStorage),

234
hasSession() (Application.Application method), 92
hasSession() (Transaction.Transaction method), 178
hasSetting() (Application.Application method), 92
hasSetting() (ConfigurableForServerSide-

Path.ConfigurableForServerSidePath method),
96

hasSetting() (MiscUtils.Configurable.Configurable
method), 244

hasSetting() (UnknownFileType-
Servlet.UnknownFileTypeServlet method),
180

hasValue() (HTTPRequest.HTTPRequest method), 124
hasValue() (Session.Session method), 159
header() (HTTPResponse.HTTPResponse method), 131
headers (WebUtils.FieldStorage.MiniFieldStorage

attribute), 233
headers() (HTTPExcep-

tions.HTTPAuthenticationRequired method),
107

headers() (HTTPExceptions.HTTPBadRequest
method), 108

headers() (HTTPExceptions.HTTPConflict method),
109

headers() (HTTPExceptions.HTTPException method),
110

headers() (HTTPExceptions.HTTPForbidden method),
111

headers() (HTTPExceptions.HTTPInsufficientStorage
method), 112

headers() (HTTPExceptions.HTTPMethodNotAllowed
method), 112

headers() (HTTPExceptions.HTTPMovedPermanently
method), 113

headers() (HTTPExceptions.HTTPNotFound method),
114

headers() (HTTPExceptions.HTTPNotImplemented
method), 115

headers() (HTTPExceptions.HTTPPreconditionFailed
method), 116

headers() (HTTPExceptions.HTTPRequestTimeout
method), 117

headers() (HTTPExceptions.HTTPServerError
method), 118

headers() (HTTPExceptions.HTTPServiceUnavailable
method), 119

headers() (HTTPExceptions.HTTPSessionExpired
method), 120

headers() (HTTPExceptions.HTTPTemporaryRedirect
method), 121

headers() (HTTPExcep-
tions.HTTPUnsupportedMediaType method),
122

headers() (HTTPResponse.HTTPResponse method),
131

headerValue() (Cookie.Cookie method), 97
heading() (MiscUtils.DataTable.DataTable method),

250
headings() (MiscUtils.DataTable.DataTable method),

250
HierRole (class in UserKit.HierRole), 211
hostAndPort() (HTTPRequest.HTTPRequest method),

124
hostName() (in module MiscUtils.Funcs), 259
htBody() (HTTPExcep-

tions.HTTPAuthenticationRequired method),
107

htBody() (HTTPExceptions.HTTPBadRequest method),
108

htBody() (HTTPExceptions.HTTPConflict method), 109
htBody() (HTTPExceptions.HTTPException method),

110
htBody() (HTTPExceptions.HTTPForbidden method),

111
htBody() (HTTPExceptions.HTTPInsufficientStorage

method), 112
htBody() (HTTPExceptions.HTTPMethodNotAllowed

method), 113

288 Index



Webware for Python 3, Release 3.0.9

htBody() (HTTPExceptions.HTTPMovedPermanently
method), 114

htBody() (HTTPExceptions.HTTPNotFound method),
115

htBody() (HTTPExceptions.HTTPNotImplemented
method), 115

htBody() (HTTPExceptions.HTTPPreconditionFailed
method), 116

htBody() (HTTPExceptions.HTTPRequestTimeout
method), 117

htBody() (HTTPExceptions.HTTPServerError method),
118

htBody() (HTTPExceptions.HTTPServiceUnavailable
method), 119

htBody() (HTTPExceptions.HTTPSessionExpired
method), 120

htBody() (HTTPExceptions.HTTPTemporaryRedirect
method), 121

htBody() (HTTPExcep-
tions.HTTPUnsupportedMediaType method),
122

htBodyArgs() (Page.Page method), 141
htBodyArgs() (PSP.PSPPage.PSPPage method), 200
htBodyArgs() (SidebarPage.SidebarPage method), 173
htDescription() (HTTPExcep-

tions.HTTPAuthenticationRequired method),
107

htDescription() (HTTPExceptions.HTTPBadRequest
method), 108

htDescription() (HTTPExceptions.HTTPConflict
method), 109

htDescription() (HTTPExceptions.HTTPException
method), 110

htDescription() (HTTPExceptions.HTTPForbidden
method), 111

htDescription() (HTTPExcep-
tions.HTTPInsufficientStorage method),
112

htDescription() (HTTPExcep-
tions.HTTPMethodNotAllowed method),
113

htDescription() (HTTPExcep-
tions.HTTPMovedPermanently method),
114

htDescription() (HTTPExceptions.HTTPNotFound
method), 115

htDescription() (HTTPExcep-
tions.HTTPNotImplemented method), 116

htDescription() (HTTPExcep-
tions.HTTPPreconditionFailed method),
116

htDescription() (HTTPExcep-
tions.HTTPRequestTimeout method), 117

htDescription() (HTTPExceptions.HTTPServerError

method), 118
htDescription() (HTTPExcep-

tions.HTTPServiceUnavailable method),
119

htDescription() (HTTPExcep-
tions.HTTPSessionExpired method), 120

htDescription() (HTTPExcep-
tions.HTTPTemporaryRedirect method),
121

htDescription() (HTTPExcep-
tions.HTTPUnsupportedMediaType method),
122

html() (HTTPExceptions.HTTPAuthenticationRequired
method), 107

html() (HTTPExceptions.HTTPBadRequest method),
108

html() (HTTPExceptions.HTTPConflict method), 109
html() (HTTPExceptions.HTTPException method), 110
html() (HTTPExceptions.HTTPForbidden method), 111
html() (HTTPExceptions.HTTPInsufficientStorage

method), 112
html() (HTTPExceptions.HTTPMethodNotAllowed

method), 113
html() (HTTPExceptions.HTTPMovedPermanently

method), 114
html() (HTTPExceptions.HTTPNotFound method), 115
html() (HTTPExceptions.HTTPNotImplemented

method), 116
html() (HTTPExceptions.HTTPPreconditionFailed

method), 117
html() (HTTPExceptions.HTTPRequestTimeout

method), 118
html() (HTTPExceptions.HTTPServerError method),

119
html() (HTTPExceptions.HTTPServiceUnavailable

method), 119
html() (HTTPExceptions.HTTPSessionExpired

method), 120
html() (HTTPExceptions.HTTPTemporaryRedirect

method), 121
html() (HTTPExceptions.HTTPUnsupportedMediaType

method), 122
htmlDebugInfo() (ExceptionHan-

dler.ExceptionHandler method), 99
htmlDecode() (in module WebUtils.Funcs), 234
htmlDecode() (Page.Page static method), 141
htmlDecode() (PSP.PSPPage.PSPPage static method),

200
htmlDecode() (SidebarPage.SidebarPage static

method), 173
htmlEncode() (in module WebUtils.Funcs), 234
htmlEncode() (Page.Page static method), 142
htmlEncode() (PSP.PSPPage.PSPPage static method),

201

Index 289



Webware for Python 3, Release 3.0.9

htmlEncode() (SidebarPage.SidebarPage static
method), 173

htmlEncodeStr() (in module WebUtils.Funcs), 234
htmlForDict() (in module WebUtils.Funcs), 234
HTMLForException() (in module WebU-

tils.HTMLForException), 235
htmlForException() (in module WebU-

tils.HTMLForException), 235
HTMLForLines() (in module WebU-

tils.HTMLForException), 235
htmlForLines() (in module WebU-

tils.HTMLForException), 235
HTMLForStackTrace() (in module WebU-

tils.HTMLForException), 235
htmlForStackTrace() (in module WebU-

tils.HTMLForException), 235
htmlInfo() (HTTPRequest.HTTPRequest method), 124
htmlInfo() (in module HTTPRequest), 129
HTMLNotAllowedError, 236
HTMLReader (class in WebUtils.HTMLTag), 236
htmlTableOfHTTPStatusCodes() (in module WebU-

tils.HTTPStatusCodes), 243
HTMLTag (class in WebUtils.HTMLTag), 239
HTMLTagAttrLookupError, 241
HTMLTagError, 241
HTMLTagIncompleteError, 241
HTMLTagProcessingInstructionError, 242
HTMLTagUnbalancedError, 242
htRootArgs() (Page.Page method), 141
htRootArgs() (PSP.PSPPage.PSPPage method), 200
htRootArgs() (SidebarPage.SidebarPage method), 173
htStyle() (in module ExceptionHandler), 102
htTitle() (HTTPExcep-

tions.HTTPAuthenticationRequired method),
107

htTitle() (HTTPExceptions.HTTPBadRequest
method), 108

htTitle() (HTTPExceptions.HTTPConflict method),
109

htTitle() (HTTPExceptions.HTTPException method),
110

htTitle() (HTTPExceptions.HTTPForbidden method),
111

htTitle() (HTTPExceptions.HTTPInsufficientStorage
method), 112

htTitle() (HTTPExceptions.HTTPMethodNotAllowed
method), 113

htTitle() (HTTPExceptions.HTTPMovedPermanently
method), 114

htTitle() (HTTPExceptions.HTTPNotFound method),
115

htTitle() (HTTPExceptions.HTTPNotImplemented
method), 116

htTitle() (HTTPExceptions.HTTPPreconditionFailed

method), 117
htTitle() (HTTPExceptions.HTTPRequestTimeout

method), 118
htTitle() (HTTPExceptions.HTTPServerError

method), 118
htTitle() (HTTPExceptions.HTTPServiceUnavailable

method), 119
htTitle() (HTTPExceptions.HTTPSessionExpired

method), 120
htTitle() (HTTPExceptions.HTTPTemporaryRedirect

method), 121
htTitle() (HTTPExcep-

tions.HTTPUnsupportedMediaType method),
122

htTitle() (in module ExceptionHandler), 102
htTitle() (Page.Page method), 141
htTitle() (PSP.PSPPage.PSPPage method), 200
htTitle() (SidebarPage.SidebarPage method), 173
HTTPAuthenticationRequired, 106
HTTPAuthorizationRequired (in module HTTPExcep-

tions), 107
HTTPBadRequest, 107
HTTPConflict, 108
HTTPContent

module, 102
HTTPContent (class in HTTPContent), 102
HTTPContentError, 106
HTTPException, 109
HTTPExceptions

module, 106
HTTPForbidden, 110
HTTPInsufficientStorage, 111
HTTPMethodNotAllowed, 112
HTTPMovedPermanently, 113
HTTPNotFound, 114
HTTPNotImplemented, 115
httpOnly() (Cookie.Cookie method), 97
HTTPPreconditionFailed, 116
HTTPRedirect (in module HTTPExceptions), 117
HTTPRequest

module, 123
HTTPRequest (class in HTTPRequest), 123
HTTPRequestTimeout, 117
HTTPResponse

module, 129
HTTPResponse (class in HTTPResponse), 129
HTTPServerError, 118
HTTPServiceUnavailable, 119
HTTPServlet

module, 133
HTTPServlet (class in HTTPServlet), 133
HTTPSessionExpired, 120
HTTPTemporaryRedirect, 121
HTTPUnsupportedMediaType, 122

290 Index



Webware for Python 3, Release 3.0.9

I
ident (TaskKit.Scheduler.Scheduler property), 226
identifier() (Session.Session method), 159
importAsPackage() (PSP.PSPServletFactory.PSPServletFactory

method), 207
importAsPackage() (ServletFac-

tory.PythonServletFactory method), 156
importAsPackage() (ServletFactory.ServletFactory

method), 158
importAsPackage() (UnknownFileType-

Servlet.UnknownFileTypeServletFactory
method), 183

importHandler() (PSP.ParseEventHandler.ParseEventHandler
method), 198

ImportManager
module, 135

ImportManager (class in ImportManager), 135
inactiveUsers() (UserKit.RoleUserManager.RoleUserManager

method), 215
inactiveUsers() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
inactiveUsers() (UserKit.UserManager.UserManager

method), 221
inactiveUsers() (UserKit.UserManagerToFile.UserManagerToFile

method), 223
IncludeGenerator (class in PSP.Generators), 194
includeURL() (Application.Application method), 92
includeURL() (HTTPContent.HTTPContent method),

103
includeURL() (JSONRPCServlet.JSONRPCServlet

method), 137
includeURL() (Page.Page method), 142
includeURL() (PSP.PSPPage.PSPPage method), 201
includeURL() (SidebarPage.SidebarPage method), 173
indent() (PSP.ServletWriter.ServletWriter method), 209
indentSpacesHandler()

(PSP.ParseEventHandler.ParseEventHandler
method), 198

indentTypeHandler()
(PSP.ParseEventHandler.ParseEventHandler
method), 198

inField() (MiscUtils.CSVParser.CSVParser method),
246

info() (HTTPRequest.HTTPRequest method), 124
init() (PSP.StreamReader.StreamReader method), 211
initApp() (in module URLParser), 186
initErrorPage() (Application.Application method), 92
initFromDict() (MiscUtils.DataTable.TableRecord

method), 252
initFromObject() (MiscUtils.DataTable.TableRecord

method), 252
initFromSequence() (MiscU-

tils.DataTable.TableRecord method), 252
initNextSerialNum()

(UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 217

initNextSerialNum()
(UserKit.UserManagerToFile.UserManagerToFile
method), 223

initParser() (in module URLParser), 186
initSessions() (Application.Application method), 92
initUserClass() (UserKit.RoleUserManager.RoleUserManager

method), 215
initUserClass() (UserKit.RoleUserManagerMixIn.RoleUserManagerMixIn

method), 216
initUserClass() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
initVersions() (Application.Application method), 92
input() (HTTPRequest.HTTPRequest method), 124
input() (Request.Request method), 151
inQuotedField() (MiscUtils.CSVParser.CSVParser

method), 246
InsertGenerator (class in PSP.Generators), 195
install() (PlugIn.PlugIn method), 150
instanceSafeHandler()

(PSP.ParseEventHandler.ParseEventHandler
method), 198

intervalSweep() (SessionDynamic-
Store.SessionDynamicStore method), 161

intervalSweep() (SessionShelve-
Store.SessionShelveStore method), 169

invalidate() (Session.Session method), 159
InvalidCommandSequence, 186
InvalidContentTypeError, 265
is_alive() (TaskKit.Scheduler.Scheduler method), 227
isActive() (UserKit.RoleUser.RoleUser method), 213
isActive() (UserKit.User.User method), 219
isAlive() (TaskKit.Scheduler.Scheduler method), 227
isBinaryType() (in module WebUtils.FieldStorage),

234
isCommitted() (HTTPResponse.HTTPResponse

method), 131
isCommitted() (Response.Response method), 152
isDaemon() (TaskKit.Scheduler.Scheduler method), 227
isDelimiter() (PSP.StreamReader.StreamReader

method), 211
isDirty() (Session.Session method), 159
isExpired() (Session.Session method), 159
isExpression() (in module PSP.PSPUtils), 209
iskeyword() (in module ServletFactory), 158
isNew() (Session.Session method), 159
isOnDemand() (TaskKit.TaskHandler.TaskHandler

method), 230
isRunning() (TaskKit.Scheduler.Scheduler method),

227
isRunning() (TaskKit.TaskHandler.TaskHandler

method), 230
isSecure() (Cookie.Cookie method), 97

Index 291



Webware for Python 3, Release 3.0.9

isSecure() (HTTPRequest.HTTPRequest method), 124
isSecure() (Request.Request method), 151
isSessionExpired() (HTTPRequest.HTTPRequest

method), 124
isSpace() (PSP.StreamReader.StreamReader method),

211
items() (MiscUtils.DataTable.TableRecord method),

252
items() (SessionDynamicStore.SessionDynamicStore

method), 161
items() (SessionFileStore.SessionFileStore method),

163
items() (SessionMemcached-

Store.SessionMemcachedStore method),
165

items() (SessionMemoryStore.SessionMemoryStore
method), 166

items() (SessionRedisStore.SessionRedisStore method),
167

items() (SessionShelveStore.SessionShelveStore
method), 169

items() (SessionStore.SessionStore method), 170
iterable() (WSGIStreamOut.WSGIStreamOut

method), 188
iteritems() (MiscUtils.DataTable.TableRecord

method), 252
iteritems() (SessionDynamic-

Store.SessionDynamicStore method), 162
iteritems() (SessionFileStore.SessionFileStore

method), 163
iteritems() (SessionMemcached-

Store.SessionMemcachedStore method),
165

iteritems() (SessionMemoryS-
tore.SessionMemoryStore method), 166

iteritems() (SessionRedisStore.SessionRedisStore
method), 167

iteritems() (SessionShelveStore.SessionShelveStore
method), 169

iteritems() (SessionStore.SessionStore method), 170
iterkeys() (MiscUtils.DataTable.TableRecord

method), 252
iterkeys() (SessionDynamic-

Store.SessionDynamicStore method), 162
iterkeys() (SessionFileStore.SessionFileStore

method), 163
iterkeys() (SessionMemcached-

Store.SessionMemcachedStore method),
165

iterkeys() (SessionMemoryStore.SessionMemoryStore
method), 166

iterkeys() (SessionRedisStore.SessionRedisStore
method), 167

iterkeys() (SessionShelveStore.SessionShelveStore

method), 169
iterkeys() (SessionStore.SessionStore method), 170
itervalues() (MiscUtils.DataTable.TableRecord

method), 252
itervalues() (SessionDynamic-

Store.SessionDynamicStore method), 162
itervalues() (SessionFileStore.SessionFileStore

method), 163
itervalues() (SessionMemcached-

Store.SessionMemcachedStore method),
165

itervalues() (SessionMemoryS-
tore.SessionMemoryStore method), 166

itervalues() (SessionRedisStore.SessionRedisStore
method), 167

itervalues() (SessionShelveStore.SessionShelveStore
method), 169

itervalues() (SessionStore.SessionStore method), 170

J
join() (TaskKit.Scheduler.Scheduler method), 227
joinCSVFields() (in module MiscUtils.CSVJoiner),

245
jsonCall() (JSONRPCServlet.JSONRPCServlet

method), 137
JSONRPCServlet

module, 136
JSONRPCServlet (class in JSONRPCServlet), 136

K
keys() (MiscUtils.DataTable.TableRecord method), 252
keys() (SessionDynamicStore.SessionDynamicStore

method), 162
keys() (SessionFileStore.SessionFileStore method), 163
keys() (SessionMemcached-

Store.SessionMemcachedStore method),
165

keys() (SessionMemoryStore.SessionMemoryStore
method), 166

keys() (SessionRedisStore.SessionRedisStore method),
168

keys() (SessionShelveStore.SessionShelveStore method),
169

keys() (SessionStore.SessionStore method), 170
keys() (WebUtils.FieldStorage.FieldStorage method),

233

L
lastAccessTime() (Session.Session method), 160
lastAccessTime() (UserKit.RoleUser.RoleUser

method), 213
lastAccessTime() (UserKit.User.User method), 219
lastLoginTime() (UserKit.RoleUser.RoleUser

method), 213

292 Index



Webware for Python 3, Release 3.0.9

lastLoginTime() (UserKit.User.User method), 219
lastModified() (HTTPContent.HTTPContent

method), 103
lastModified() (HTTPServlet.HTTPServlet method),

134
lastModified() (JSONRPCServlet.JSONRPCServlet

method), 137
lastModified() (Page.Page method), 142
lastModified() (PickleRPCServlet.PickleRPCServlet

method), 148
lastModified() (PSP.PSPPage.PSPPage method), 201
lastModified() (RPCServlet.RPCServlet method), 154
lastModified() (SidebarPage.SidebarPage method),

173
lastModified() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
181

lastModified() (XMLRPCServlet.XMLRPCServlet
method), 189

list (WebUtils.FieldStorage.MiniFieldStorage at-
tribute), 234

load() (MiscUtils.PickleRPC.SafeTransport method),
267

load() (MiscUtils.PickleRPC.SafeUnpickler method),
268

load() (MiscUtils.PickleRPC.Transport method), 268
load() (PickleRPCServlet.PickleRPCServlet method),

148
load() (PlugIn.PlugIn method), 150
loadClass() (PSP.PSPServletFactory.PSPServletFactory

method), 207
loadClass() (ServletFactory.PythonServletFactory

method), 157
loadClass() (ServletFactory.ServletFactory method),

158
loadClass() (UnknownFileType-

Servlet.UnknownFileTypeServletFactory
method), 183

loadClassFromFile()
(PSP.PSPServletFactory.PSPServletFactory
method), 207

loadPlugIn() (Application.Application method), 92
loadPlugIns() (Application.Application method), 92
loads() (MiscUtils.PickleRPC.SafeTransport method),

267
loads() (MiscUtils.PickleRPC.SafeUnpickler method),

268
loads() (MiscUtils.PickleRPC.Transport method), 268
loads() (PickleRPCServlet.PickleRPCServlet method),

148
loadUser() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
loadUser() (UserKit.UserManagerToFile.UserManagerToFile

method), 223

localAddress() (HTTPRequest.HTTPRequest method),
124

localAddress() (Request.Request method), 151
localIP() (in module MiscUtils.Funcs), 259
localName() (HTTPRequest.HTTPRequest static

method), 124
localName() (Request.Request static method), 151
localPort() (HTTPRequest.HTTPRequest method),

124
localPort() (Request.Request method), 151
localTimeDelta() (in module MiscUtils.Funcs), 259
location() (HTTPExceptions.HTTPMovedPermanently

method), 114
location() (HTTPExceptions.HTTPTemporaryRedirect

method), 121
log() (HTTPContent.HTTPContent method), 103
log() (HTTPServlet.HTTPServlet method), 134
log() (JSONRPCServlet.JSONRPCServlet method), 137
log() (Page.Page method), 142
log() (PickleRPCServlet.PickleRPCServlet method),

148
log() (PSP.PSPPage.PSPPage method), 201
log() (RPCServlet.RPCServlet method), 154
log() (Servlet.Servlet method), 156
log() (SidebarPage.SidebarPage method), 173
log() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
181

log() (XMLRPCServlet.XMLRPCServlet method), 189
logExceptionToConsole() (ExceptionHan-

dler.ExceptionHandler method), 100
logExceptionToDisk() (ExceptionHan-

dler.ExceptionHandler method), 100
login() (UserKit.RoleUser.RoleUser method), 213
login() (UserKit.RoleUserManager.RoleUserManager

method), 215
login() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
login() (UserKit.User.User method), 219
login() (UserKit.UserManager.UserManager method),

221
login() (UserKit.UserManagerToFile.UserManagerToFile

method), 223
loginExternalId() (UserKit.RoleUserManager.RoleUserManager

method), 215
loginExternalId() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
loginExternalId() (UserKit.UserManager.UserManager

method), 221
loginExternalId() (UserKit.UserManagerToFile.UserManagerToFile

method), 223
loginName() (UserKit.RoleUserManager.RoleUserManager

method), 215
loginName() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

Index 293



Webware for Python 3, Release 3.0.9

method), 217
loginName() (UserKit.UserManager.UserManager

method), 221
loginName() (UserKit.UserManagerToFile.UserManagerToFile

method), 223
loginSerialNum() (UserKit.RoleUserManager.RoleUserManager

method), 215
loginSerialNum() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
loginSerialNum() (UserKit.UserManager.UserManager

method), 221
loginSerialNum() (UserKit.UserManagerToFile.UserManagerToFile

method), 223
logout() (UserKit.RoleUser.RoleUser method), 213
logout() (UserKit.RoleUserManager.RoleUserManager

method), 215
logout() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
logout() (UserKit.User.User method), 219
logout() (UserKit.UserManager.UserManager

method), 221
logout() (UserKit.UserManagerToFile.UserManagerToFile

method), 223

M
main() (in module MiscUtils.DataTable), 253
main() (WebUtils.HTMLTag.HTMLReader method), 238
mainMethodHandler()

(PSP.ParseEventHandler.ParseEventHandler
method), 198

make_connection() (MiscU-
tils.PickleRPC.SafeTransport method), 267

make_connection() (MiscUtils.PickleRPC.Transport
method), 268

make_file() (WebUtils.FieldStorage.FieldStorage
method), 233

makeDirs() (Application.Application method), 92
manager() (UserKit.RoleUser.RoleUser method), 213
manager() (UserKit.User.User method), 219
Mark (class in PSP.StreamReader), 210
mark() (PSP.StreamReader.StreamReader method), 211
matches() (PSP.StreamReader.StreamReader method),

211
maxAge() (Cookie.Cookie method), 97
mcKey() (SessionMemcached-

Store.SessionMemcachedStore method),
165

memoryKeysInAccessTimeOrder() (SessionDynamic-
Store.SessionDynamicStore method), 162

menuHeading() (SidebarPage.SidebarPage method),
173

menuItem() (SidebarPage.SidebarPage method), 173
mergeData() (PSP.Generators.CharDataGenerator

method), 194

mergeTextHeaders() (HTTPResponse.HTTPResponse
method), 131

message() (MiscUtils.Error.Error method), 258
method() (HTTPRequest.HTTPRequest method), 125
MethodEndGenerator (class in PSP.Generators), 195
MethodGenerator (class in PSP.Generators), 195
methodNameForAction() (HTTPContent.HTTPContent

method), 104
methodNameForAction() (JSONRPC-

Servlet.JSONRPCServlet method), 137
methodNameForAction() (Page.Page method), 142
methodNameForAction() (PSP.PSPPage.PSPPage

method), 201
methodNameForAction() (SidebarPage.SidebarPage

method), 173
MiniFieldStorage (class in WebUtils.FieldStorage),

233
MiscUtils

module, 84
MiscUtils.Configurable

module, 243
MiscUtils.CSVJoiner

module, 245
MiscUtils.CSVParser

module, 245
MiscUtils.DataTable

module, 247
MiscUtils.DateInterval

module, 253
MiscUtils.DateParser

module, 253
MiscUtils.DBPool

module, 253
MiscUtils.DictForArgs

module, 255
MiscUtils.Error

module, 258
MiscUtils.Funcs

module, 259
MiscUtils.MixIn

module, 261
MiscUtils.NamedValueAccess

module, 261
MiscUtils.ParamFactory

module, 263
MiscUtils.PickleCache

module, 263
MiscUtils.PickleRPC

module, 264
MixIn() (in module MiscUtils.MixIn), 261
modifiedUserTimeout()

(UserKit.RoleUserManager.RoleUserManager
method), 215

modifiedUserTimeout()

294 Index



Webware for Python 3, Release 3.0.9

(UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 217

modifiedUserTimeout()
(UserKit.UserManager.UserManager method),
221

modifiedUserTimeout()
(UserKit.UserManagerToFile.UserManagerToFile
method), 223

module
Application, 89
ConfigurableForServerSidePath, 95
Cookie, 97
ExceptionHandler, 98
HTTPContent, 102
HTTPExceptions, 106
HTTPRequest, 123
HTTPResponse, 129
HTTPServlet, 133
ImportManager, 135
JSONRPCServlet, 136
MiscUtils, 84
MiscUtils.Configurable, 243
MiscUtils.CSVJoiner, 245
MiscUtils.CSVParser, 245
MiscUtils.DataTable, 247
MiscUtils.DateInterval, 253
MiscUtils.DateParser, 253
MiscUtils.DBPool, 253
MiscUtils.DictForArgs, 255
MiscUtils.Error, 258
MiscUtils.Funcs, 259
MiscUtils.MixIn, 261
MiscUtils.NamedValueAccess, 261
MiscUtils.ParamFactory, 263
MiscUtils.PickleCache, 263
MiscUtils.PickleRPC, 264
Page, 140
PickleRPCServlet, 146
PlugIn, 149
Properties, 151
PSP, 65
PSP.BraceConverter, 190
PSP.Context, 191
PSP.Generators, 194
PSP.ParseEventHandler, 196
PSP.PSPCompiler, 199
PSP.PSPPage, 199
PSP.PSPParser, 205
PSP.PSPServletFactory, 207
PSP.PSPUtils, 208
PSP.ServletWriter, 209
PSP.StreamReader, 210
Request, 151
Response, 152

RPCServlet, 153
Servlet, 155
ServletFactory, 156
Session, 159
SessionDynamicStore, 161
SessionFileStore, 162
SessionMemcachedStore, 164
SessionMemoryStore, 165
SessionRedisStore, 167
SessionShelveStore, 168
SessionStore, 169
SidebarPage, 171
TaskKit, 76
TaskKit.Scheduler, 225
TaskKit.Task, 229
TaskKit.TaskHandler, 230
Transaction, 178
UnknownFileTypeServlet, 179
URLParser, 183
UserKit, 74
UserKit.HierRole, 211
UserKit.Role, 212
UserKit.RoleUser, 213
UserKit.RoleUserManager, 214
UserKit.RoleUserManagerMixIn, 216
UserKit.RoleUserManagerToFile, 216
UserKit.User, 219
UserKit.UserManager, 219
UserKit.UserManagerToFile, 222
WebUtils, 82
WebUtils.ExpansiveHTMLForException, 231
WebUtils.FieldStorage, 231
WebUtils.Funcs, 234
WebUtils.HTMLForException, 235
WebUtils.HTMLTag, 236
WebUtils.HTTPStatusCodes, 243
WSGIStreamOut, 186
XMLRPCServlet, 188

module() (PlugIn.PlugIn method), 150
moduleFromSpec() (ImportManager.ImportManager

method), 135
moveToFile() (SessionDynamic-

Store.SessionDynamicStore method), 162
moveToMemory() (SessionDynamic-

Store.SessionDynamicStore method), 162

N
name (TaskKit.Scheduler.Scheduler property), 227
name() (Application.Application static method), 92
name() (Cookie.Cookie method), 97
name() (HTTPContent.HTTPContent method), 104
name() (HTTPServlet.HTTPServlet method), 134
name() (JSONRPCServlet.JSONRPCServlet method),

137

Index 295



Webware for Python 3, Release 3.0.9

name() (MiscUtils.DataTable.TableColumn method),
251

name() (Page.Page method), 142
name() (PickleRPCServlet.PickleRPCServlet method),

148
name() (PlugIn.PlugIn method), 150
name() (PSP.PSPPage.PSPPage method), 201
name() (PSP.PSPServletFactory.PSPServletFactory

method), 208
name() (RPCServlet.RPCServlet method), 154
name() (Servlet.Servlet method), 156
name() (ServletFactory.PythonServletFactory method),

157
name() (ServletFactory.ServletFactory method), 158
name() (SidebarPage.SidebarPage method), 173
name() (TaskKit.Task.Task method), 229
name() (TaskKit.TaskHandler.TaskHandler method), 230
name() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
181

name() (UnknownFileType-
Servlet.UnknownFileTypeServletFactory
method), 183

name() (UserKit.HierRole.HierRole method), 212
name() (UserKit.Role.Role method), 212
name() (UserKit.RoleUser.RoleUser method), 213
name() (UserKit.User.User method), 219
name() (WebUtils.HTMLTag.HTMLTag method), 240
name() (XMLRPCServlet.XMLRPCServlet method), 189
NamedValueAccessError, 261
nameToIndexMap() (MiscUtils.DataTable.DataTable

method), 250
needCommit() (WSGIStreamOut.WSGIStreamOut

method), 188
newSourceFile() (PSP.StreamReader.StreamReader

method), 211
nextChar() (PSP.StreamReader.StreamReader method),

211
nextContent() (PSP.StreamReader.StreamReader

method), 211
nextSerialNum() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
nextSerialNum() (UserKit.UserManagerToFile.UserManagerToFile

method), 223
nextTime() (TaskKit.Scheduler.Scheduler method), 227
normalizeIndentation() (in module PSP.PSPUtils),

209
normURL() (in module WebUtils.Funcs), 234
notify() (TaskKit.Scheduler.Scheduler method), 227
notifyCompletion() (TaskKit.Scheduler.Scheduler

method), 227
notifyCompletion() (TaskKit.TaskHandler.TaskHandler

method), 230
notifyFailure() (TaskKit.Scheduler.Scheduler

method), 227
notifyFailure() (TaskKit.TaskHandler.TaskHandler

method), 230
notifyOfNewFiles() (ImportManager.ImportManager

method), 135
notImplemented() (HTTPContent.HTTPContent static

method), 104
notImplemented() (HTTPServlet.HTTPServlet static

method), 134
notImplemented() (JSONRPC-

Servlet.JSONRPCServlet static method),
138

notImplemented() (Page.Page static method), 142
notImplemented() (PickleRPC-

Servlet.PickleRPCServlet static method),
148

notImplemented() (PSP.PSPPage.PSPPage static
method), 201

notImplemented() (RPCServlet.RPCServlet static
method), 154

notImplemented() (SidebarPage.SidebarPage static
method), 174

notImplemented() (UnknownFileType-
Servlet.UnknownFileTypeServlet static
method), 181

notImplemented() (XMLRPCServlet.XMLRPCServlet
static method), 189

NotSupportedError, 254
numActiveUsers() (UserKit.RoleUserManager.RoleUserManager

method), 215
numActiveUsers() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
numActiveUsers() (UserKit.UserManager.UserManager

method), 222
numActiveUsers() (UserKit.UserManagerToFile.UserManagerToFile

method), 223
numAttrs() (WebUtils.HTMLTag.HTMLTag method),

240
numChildren() (WebUtils.HTMLTag.HTMLTag

method), 240
numHeadings() (MiscUtils.DataTable.DataTable

method), 250
numRequests() (Application.Application method), 92
numSubtags() (WebUtils.HTMLTag.HTMLTag method),

240
numTransactions() (Session.Session method), 160

O
object() (MiscUtils.Error.Error method), 258
onDemand() (TaskKit.Scheduler.Scheduler method), 227
onDemandTasks() (TaskKit.Scheduler.Scheduler

method), 228
open() (HTTPContent.HTTPContent method), 104
open() (HTTPServlet.HTTPServlet method), 134

296 Index



Webware for Python 3, Release 3.0.9

open() (JSONRPCServlet.JSONRPCServlet method),
138

open() (Page.Page method), 142
open() (PickleRPCServlet.PickleRPCServlet method),

148
open() (PSP.PSPPage.PSPPage method), 201
open() (RPCServlet.RPCServlet method), 154
open() (Servlet.Servlet method), 156
open() (SidebarPage.SidebarPage method), 174
open() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
181

open() (XMLRPCServlet.XMLRPCServlet method), 189
openBlock() (PSP.BraceConverter.BraceConverter

method), 191
openBrace() (PSP.BraceConverter.BraceConverter

method), 191
optimizeCharData() (PSP.ParseEventHandler.ParseEventHandler

method), 198
originalContextName() (HTTPRequest.HTTPRequest

method), 125
originalServlet() (HTTPRequest.HTTPRequest

method), 125
originalURI() (HTTPRequest.HTTPRequest method),

125
originalURLPath() (HTTPRequest.HTTPRequest

method), 125
osIdDict() (in module ExceptionHandler), 102
outputEncoding() (Application.Application method),

92
outputEncoding() (HTTPContent.HTTPContent

method), 104
outputEncoding() (JSONRPC-

Servlet.JSONRPCServlet method), 138
outputEncoding() (Page.Page method), 142
outputEncoding() (PSP.PSPPage.PSPPage method),

201
outputEncoding() (SidebarPage.SidebarPage method),

174

P
Page

module, 140
Page (class in Page), 140
ParamFactory (class in MiscUtils.ParamFactory), 263
parent() (HTTPRequest.HTTPRequest method), 125
parents() (HTTPRequest.HTTPRequest method), 125
parse() (in module MiscUtils.CSVParser), 247
parse() (MiscUtils.CSVParser.CSVParser method), 246
parse() (PSP.PSPParser.PSPParser method), 206
parse() (URLParser.ContextParser method), 184
parse() (URLParser.URLParameterParser method), 185
parse_bogus_comment() (WebU-

tils.HTMLTag.HTMLReader method), 238

parse_comment() (WebUtils.HTMLTag.HTMLReader
method), 238

parse_declaration() (WebU-
tils.HTMLTag.HTMLReader method), 238

parse_endtag() (WebUtils.HTMLTag.HTMLReader
method), 238

parse_header() (in module WebUtils.FieldStorage),
234

parse_html_declaration() (WebU-
tils.HTMLTag.HTMLReader method), 238

parse_marked_section() (WebU-
tils.HTMLTag.HTMLReader method), 238

parse_pi() (WebUtils.HTMLTag.HTMLReader
method), 238

parse_response() (MiscU-
tils.PickleRPC.SafeTransport method), 267

parse_response() (MiscUtils.PickleRPC.Transport
method), 268

parse_response_gzip() (MiscU-
tils.PickleRPC.SafeTransport method), 267

parse_response_gzip() (MiscU-
tils.PickleRPC.Transport method), 268

parse_starttag() (WebUtils.HTMLTag.HTMLReader
method), 238

parseAttributeValue()
(PSP.StreamReader.StreamReader method),
211

parseDate() (in module MiscUtils.DateParser), 253
parseDateTime() (in module MiscUtils.DateParser),

253
ParseError, 246
ParseEventHandler (class in PSP.ParseEventHandler),

196
parseHook() (URLParser.URLParameterParser static

method), 185
parseLine() (PSP.BraceConverter.BraceConverter

method), 191
parseTagAttributes()

(PSP.StreamReader.StreamReader method),
211

parseTime() (in module MiscUtils.DateParser), 253
parseToken() (PSP.StreamReader.StreamReader

method), 211
password() (UserKit.RoleUser.RoleUser method), 213
password() (UserKit.User.User method), 219
path() (Cookie.Cookie method), 98
path() (PlugIn.PlugIn method), 150
pathInfo() (HTTPRequest.HTTPRequest method), 125
pathTranslated() (HTTPRequest.HTTPRequest

method), 125
peekChar() (PSP.StreamReader.StreamReader method),

211
period() (TaskKit.TaskHandler.TaskHandler method),

230

Index 297



Webware for Python 3, Release 3.0.9

PickleCache (class in MiscUtils.PickleCache), 263
PickleCacheReader (class in MiscUtils.PickleCache),

263
PickleCacheWriter (class in MiscUtils.PickleCache),

264
picklePath() (MiscUtils.PickleCache.PickleCache

method), 263
picklePath() (MiscU-

tils.PickleCache.PickleCacheReader method),
264

picklePath() (MiscU-
tils.PickleCache.PickleCacheWriter method),
264

PickleRPCServlet
module, 146

PickleRPCServlet (class in PickleRPCServlet), 146
playsRole() (UserKit.HierRole.HierRole method), 212
playsRole() (UserKit.Role.Role method), 212
playsRole() (UserKit.RoleUser.RoleUser method), 213
PlugIn

module, 149
PlugIn (class in PlugIn), 149
plugIn() (Application.Application method), 92
PlugInError, 150
plugIns() (Application.Application method), 92
PooledConnection (class in MiscUtils.DBPool), 255
pop() (HTTPRequest.HTTPRequest method), 125
pop() (SessionDynamicStore.SessionDynamicStore

method), 162
pop() (SessionFileStore.SessionFileStore method), 163
pop() (SessionMemcached-

Store.SessionMemcachedStore method),
165

pop() (SessionMemoryStore.SessionMemoryStore
method), 166

pop() (SessionRedisStore.SessionRedisStore method),
168

pop() (SessionShelveStore.SessionShelveStore method),
169

pop() (SessionStore.SessionStore method), 171
pop() (WSGIStreamOut.WSGIStreamOut method), 188
popFile() (PSP.StreamReader.StreamReader method),

211
popIndent() (PSP.ServletWriter.ServletWriter method),

209
popStream() (PSP.StreamReader.Mark method), 210
positiveId() (in module MiscUtils.Funcs), 260
postAction() (HTTPContent.HTTPContent method),

104
postAction() (JSONRPCServlet.JSONRPCServlet

method), 138
postAction() (Page.Page method), 142
postAction() (PSP.PSPPage.PSPPage method), 201
postAction() (SidebarPage.SidebarPage method), 174

pprint() (WebUtils.HTMLTag.HTMLReader method),
238

pprint() (WebUtils.HTMLTag.HTMLTag method), 240
preAction() (HTTPContent.HTTPContent method),

104
preAction() (JSONRPCServlet.JSONRPCServlet

method), 138
preAction() (Page.Page method), 142
preAction() (PSP.PSPPage.PSPPage method), 201
preAction() (SidebarPage.SidebarPage method), 174
prepend() (WSGIStreamOut.WSGIStreamOut method),

188
previousContextName() (HTTPRequest.HTTPRequest

method), 125
previousContextNames() (HTTPRe-

quest.HTTPRequest method), 125
previousServlet() (HTTPRequest.HTTPRequest

method), 125
previousServlets() (HTTPRequest.HTTPRequest

method), 125
previousURI() (HTTPRequest.HTTPRequest method),

125
previousURIs() (HTTPRequest.HTTPRequest method),

125
previousURLPath() (HTTPRequest.HTTPRequest

method), 125
previousURLPaths() (HTTPRequest.HTTPRequest

method), 126
printChars() (PSP.ServletWriter.ServletWriter

method), 209
printComment() (PSP.ServletWriter.ServletWriter

method), 209
printConfig() (Application.Application method), 92
printConfig() (ConfigurableForServerSide-

Path.ConfigurableForServerSidePath method),
96

printConfig() (MiscUtils.Configurable.Configurable
method), 244

printConfig() (UnknownFileType-
Servlet.UnknownFileTypeServlet method),
181

printIndent() (PSP.ServletWriter.ServletWriter
method), 209

printList() (PSP.ServletWriter.ServletWriter method),
209

println() (PSP.ServletWriter.ServletWriter method),
209

printMultiLn() (PSP.ServletWriter.ServletWriter
method), 209

printsStack() (WebUtils.HTMLTag.HTMLReader
method), 238

printStartUpMessage() (Application.Application
method), 93

privateErrorPage() (ExceptionHan-

298 Index



Webware for Python 3, Release 3.0.9

dler.ExceptionHandler method), 100
proceed() (TaskKit.Task.Task method), 229
Properties

module, 151
properties() (PlugIn.PlugIn method), 150
protocol() (HTTPRequest.HTTPRequest method), 126
protocol() (HTTPResponse.HTTPResponse method),

131
ProtocolError, 266
PSP

module, 65
PSP.BraceConverter

module, 190
PSP.Context

module, 191
PSP.Generators

module, 194
PSP.ParseEventHandler

module, 196
PSP.PSPCompiler

module, 199
PSP.PSPPage

module, 199
PSP.PSPParser

module, 205
PSP.PSPServletFactory

module, 207
PSP.PSPUtils

module, 208
PSP.ServletWriter

module, 209
PSP.StreamReader

module, 210
PSPCLContext (class in PSP.Context), 191
PSPContext (class in PSP.Context), 193
PSPPage (class in PSP.PSPPage), 199
PSPParser (class in PSP.PSPParser), 205
PSPParserException, 208
PSPServletFactory (class in PSP.PSPServletFactory),

207
publicErrorPage() (ExceptionHan-

dler.ExceptionHandler method), 100
push() (HTTPRequest.HTTPRequest method), 126
pushFile() (PSP.StreamReader.StreamReader method),

211
pushIndent() (PSP.ServletWriter.ServletWriter

method), 210
pushStream() (PSP.StreamReader.Mark method), 210
PyDictForArgs() (in module MiscUtils.DictForArgs),

256
pyDictForArgs() (in module MiscUtils.DictForArgs),

257
PythonServletFactory (class in ServletFactory), 156

Q
queryString() (HTTPRequest.HTTPRequest method),

126
quoteInField() (MiscUtils.CSVParser.CSVParser

method), 246
quoteInQuotedField() (MiscU-

tils.CSVParser.CSVParser method), 246
quoteString() (PSP.ServletWriter.ServletWriter

method), 210

R
rawInput() (HTTPRequest.HTTPRequest method), 126
rawResponse() (HTTPResponse.HTTPResponse

method), 131
read() (MiscUtils.PickleCache.PickleCacheReader

method), 264
read_binary() (WebUtils.FieldStorage.FieldStorage

method), 233
read_lines() (WebUtils.FieldStorage.FieldStorage

method), 233
read_lines_to_eof() (WebU-

tils.FieldStorage.FieldStorage method), 233
read_lines_to_outerboundary() (WebU-

tils.FieldStorage.FieldStorage method), 233
read_multi() (WebUtils.FieldStorage.FieldStorage

method), 233
read_single() (WebUtils.FieldStorage.FieldStorage

method), 233
read_urlencoded() (WebU-

tils.FieldStorage.FieldStorage method), 233
readAttr() (WebUtils.HTMLTag.HTMLTag method),

241
readConfig() (Application.Application static method),

93
readConfig() (ConfigurableForServerSide-

Path.ConfigurableForServerSidePath static
method), 96

readConfig() (MiscUtils.Configurable.Configurable
static method), 244

readConfig() (UnknownFileType-
Servlet.UnknownFileTypeServlet static
method), 181

readExcel() (MiscUtils.DataTable.DataTable method),
250

readFile() (MiscUtils.DataTable.DataTable method),
250

readFileNamed() (MiscUtils.DataTable.DataTable
method), 250

readFileNamed() (WebUtils.HTMLTag.HTMLReader
method), 238

readLines() (MiscUtils.DataTable.DataTable method),
251

readPickleCache() (in module MiscU-
tils.PickleCache), 264

Index 299



Webware for Python 3, Release 3.0.9

readString() (MiscUtils.DataTable.DataTable
method), 251

readString() (WebUtils.HTMLTag.HTMLReader
method), 239

recordEndTime() (HTTPResponse.HTTPResponse
method), 131

recordEndTime() (Response.Response method), 152
recordFile() (ImportManager.ImportManager

method), 135
recordModule() (ImportManager.ImportManager

method), 135
recordModules() (ImportManager.ImportManager

method), 135
recordsEqualTo() (MiscUtils.DataTable.DataTable

method), 251
recordSession() (HTTPResponse.HTTPResponse

method), 131
redirectSansScript() (UnknownFileType-

Servlet.UnknownFileTypeServlet static
method), 181

redisKey() (SessionRedisStore.SessionRedisStore
method), 168

registerShutDownHandler() (Applica-
tion.Application method), 93

registerSourceFile()
(PSP.StreamReader.StreamReader method),
211

remoteAddress() (HTTPRequest.HTTPRequest
method), 126

remoteAddress() (Request.Request method), 152
remoteName() (HTTPRequest.HTTPRequest method),

126
remoteName() (Request.Request method), 152
remoteUser() (HTTPRequest.HTTPRequest method),

126
removeKey() (SessionFileStore.SessionFileStore

method), 163
removePathSession() (Application.Application static

method), 93
removeQuotes() (in module PSP.PSPUtils), 209
repr() (ExceptionHandler.ExceptionHandler method),

100
Request

module, 151
Request (class in Request), 151
request() (HTTPContent.HTTPContent method), 104
request() (JSONRPCServlet.JSONRPCServlet

method), 138
request() (MiscUtils.PickleRPC.SafeTransport

method), 267
request() (MiscUtils.PickleRPC.Transport method),

269
request() (Page.Page method), 142
request() (PSP.PSPPage.PSPPage method), 201

request() (SidebarPage.SidebarPage method), 174
request() (Transaction.Transaction method), 178
RequestError, 266
requestID() (HTTPRequest.HTTPRequest method),

126
requestURI() (in module WebUtils.Funcs), 234
reschedule() (TaskKit.TaskHandler.TaskHandler

method), 230
reset() (HTTPResponse.HTTPResponse method), 132
reset() (MiscUtils.CSVParser.CSVParser method), 246
reset() (PSP.StreamReader.StreamReader method), 211
reset() (Response.Response method), 153
reset() (TaskKit.TaskHandler.TaskHandler method),

230
reset() (URLParser.ServletFactoryManagerClass

method), 185
reset() (WebUtils.HTMLTag.HTMLReader method),

239
resolveDefaultContext() (URL-

Parser.ContextParser method), 184
resolveInternalRelativePath() (Applica-

tion.Application static method), 93
resolveRelativeURI() (PSP.Context.PSPCLContext

method), 192
respond() (HTTPContent.HTTPContent method), 104
respond() (HTTPServlet.HTTPServlet method), 134
respond() (JSONRPCServlet.JSONRPCServlet

method), 138
respond() (Page.Page method), 142
respond() (PickleRPCServlet.PickleRPCServlet

method), 148
respond() (PSP.PSPPage.PSPPage method), 201
respond() (RPCServlet.RPCServlet method), 154
respond() (Servlet.Servlet method), 156
respond() (Session.Session method), 160
respond() (SidebarPage.SidebarPage method), 174
respond() (Transaction.Transaction method), 178
respond() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
181

respond() (XMLRPCServlet.XMLRPCServlet method),
190

respondToGet() (HTTPContent.HTTPContent
method), 104

respondToGet() (JSONRPCServlet.JSONRPCServlet
method), 138

respondToGet() (Page.Page method), 143
respondToGet() (PSP.PSPPage.PSPPage method), 202
respondToGet() (SidebarPage.SidebarPage method),

174
respondToGet() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
181

respondToHead() (HTTPContent.HTTPContent

300 Index



Webware for Python 3, Release 3.0.9

method), 104
respondToHead() (HTTPServlet.HTTPServlet method),

134
respondToHead() (JSONRPCServlet.JSONRPCServlet

method), 138
respondToHead() (Page.Page method), 143
respondToHead() (PickleRPCServlet.PickleRPCServlet

method), 148
respondToHead() (PSP.PSPPage.PSPPage method),

202
respondToHead() (RPCServlet.RPCServlet method),

154
respondToHead() (SidebarPage.SidebarPage method),

174
respondToHead() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
181

respondToHead() (XMLRPCServlet.XMLRPCServlet
method), 190

respondToPost() (HTTPContent.HTTPContent
method), 105

respondToPost() (JSONRPCServlet.JSONRPCServlet
method), 138

respondToPost() (Page.Page method), 143
respondToPost() (PickleRPCServlet.PickleRPCServlet

method), 148
respondToPost() (PSP.PSPPage.PSPPage method),

202
respondToPost() (SidebarPage.SidebarPage method),

174
respondToPost() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
181

respondToPost() (XMLRPCServlet.XMLRPCServlet
method), 190

Response
module, 152

Response (class in Response), 152
response() (HTTPContent.HTTPContent method), 105
response() (JSONRPCServlet.JSONRPCServlet

method), 138
response() (Page.Page method), 143
response() (PSP.PSPPage.PSPPage method), 202
response() (SidebarPage.SidebarPage method), 174
response() (Transaction.Transaction method), 178
responseClass() (HTTPRequest.HTTPRequest

method), 126
responseClass() (Request.Request method), 152
ResponseError, 266
resultForException() (PickleRPC-

Servlet.PickleRPCServlet method), 148
resultForException() (RPCServlet.RPCServlet

method), 154
resultForException() (XMLRPC-

Servlet.XMLRPCServlet method), 190
returnServlet() (Application.Application static

method), 93
returnServlet() (PSP.PSPServletFactory.PSPServletFactory

method), 208
returnServlet() (ServletFac-

tory.PythonServletFactory method), 157
returnServlet() (ServletFactory.ServletFactory

method), 158
returnServlet() (UnknownFileType-

Servlet.UnknownFileTypeServletFactory
method), 183

Role (class in UserKit.Role), 212
role() (UserKit.RoleUserManager.RoleUserManager

method), 215
role() (UserKit.RoleUserManagerMixIn.RoleUserManagerMixIn

method), 216
role() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
roles() (UserKit.RoleUser.RoleUser method), 213
roles() (UserKit.RoleUserManager.RoleUserManager

method), 215
roles() (UserKit.RoleUserManagerMixIn.RoleUserManagerMixIn

method), 216
roles() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
RoleUser (class in UserKit.RoleUser), 213
RoleUserManager (class in UserKit.RoleUserManager),

214
RoleUserManagerMixIn (class in

UserKit.RoleUserManagerMixIn), 216
RoleUserManagerToFile (class in

UserKit.RoleUserManagerToFile), 216
rootTag() (WebUtils.HTMLTag.HTMLReader method),

239
rootURLParser() (Application.Application method), 93
RPCServlet

module, 153
RPCServlet (class in RPCServlet), 153
run() (TaskKit.Scheduler.Scheduler method), 228
run() (TaskKit.Task.Task method), 230
runAgain() (TaskKit.TaskHandler.TaskHandler

method), 230
runMethodForTransaction() (HTTPCon-

tent.HTTPContent method), 105
runMethodForTransaction()

(HTTPServlet.HTTPServlet method), 134
runMethodForTransaction() (JSONRPC-

Servlet.JSONRPCServlet method), 138
runMethodForTransaction() (Page.Page method),

143
runMethodForTransaction() (PickleRPC-

Servlet.PickleRPCServlet method), 148
runMethodForTransaction()

Index 301



Webware for Python 3, Release 3.0.9

(PSP.PSPPage.PSPPage method), 202
runMethodForTransaction() (RPC-

Servlet.RPCServlet method), 154
runMethodForTransaction() (Servlet.Servlet

method), 156
runMethodForTransaction() (Side-

barPage.SidebarPage method), 174
runMethodForTransaction() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
182

runMethodForTransaction() (XMLRPC-
Servlet.XMLRPCServlet method), 190

running() (TaskKit.Scheduler.Scheduler method), 228
runningTasks() (TaskKit.Scheduler.Scheduler method),

228
runOnCompletion() (TaskKit.TaskHandler.TaskHandler

method), 230
runTask() (TaskKit.Scheduler.Scheduler method), 228
runTask() (TaskKit.TaskHandler.TaskHandler method),

230
runTaskNow() (TaskKit.Scheduler.Scheduler method),

228
runTransaction() (Application.Application method),

93
runTransaction() (HTTPContent.HTTPContent static

method), 105
runTransaction() (HTTPServlet.HTTPServlet static

method), 134
runTransaction() (JSONRPC-

Servlet.JSONRPCServlet static method),
138

runTransaction() (Page.Page static method), 143
runTransaction() (PickleRPC-

Servlet.PickleRPCServlet static method),
148

runTransaction() (PSP.PSPPage.PSPPage static
method), 202

runTransaction() (RPCServlet.RPCServlet static
method), 154

runTransaction() (Servlet.Servlet static method), 156
runTransaction() (SidebarPage.SidebarPage static

method), 174
runTransaction() (UnknownFileType-

Servlet.UnknownFileTypeServlet static
method), 182

runTransaction() (XMLRPCServlet.XMLRPCServlet
static method), 190

runTransactionViaServlet() (Applica-
tion.Application static method), 93

S
safeDescription() (in module MiscUtils.Funcs), 260
SafeTransport (class in MiscUtils.PickleRPC), 266
SafeUnpickler (class in MiscUtils.PickleRPC), 267

sameSite() (Cookie.Cookie method), 98
save() (MiscUtils.DataTable.DataTable method), 251
save() (UserKit.UserManagerToFile.UserMixIn

method), 224
saveErrorPage() (ExceptionHan-

dler.ExceptionHandler method), 100
saveField() (MiscUtils.CSVParser.CSVParser

method), 246
scanSerialNums() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 217
scanSerialNums() (UserKit.UserManagerToFile.UserManagerToFile

method), 223
scheduled() (TaskKit.Scheduler.Scheduler method),

228
scheduledTasks() (TaskKit.Scheduler.Scheduler

method), 228
Scheduler (class in TaskKit.Scheduler), 225
scheduleTask() (TaskKit.Scheduler.Scheduler method),

228
scheme() (HTTPRequest.HTTPRequest method), 126
ScriptClassGenerator (class in PSP.Generators), 195
ScriptFileGenerator (class in PSP.Generators), 195
scriptFileName() (HTTPRequest.HTTPRequest

method), 126
ScriptGenerator (class in PSP.Generators), 196
scriptName() (HTTPRequest.HTTPRequest method),

126
send_content() (MiscUtils.PickleRPC.SafeTransport

method), 267
send_content() (MiscUtils.PickleRPC.Transport

method), 269
send_host() (MiscUtils.PickleRPC.SafeTransport

method), 267
send_host() (MiscUtils.PickleRPC.Transport method),

269
send_request() (MiscUtils.PickleRPC.SafeTransport

method), 267
send_request() (MiscUtils.PickleRPC.Transport

method), 269
send_user_agent() (MiscU-

tils.PickleRPC.SafeTransport method), 267
send_user_agent() (MiscUtils.PickleRPC.Transport

method), 269
sendError() (HTTPResponse.HTTPResponse method),

132
sendOK() (PickleRPCServlet.PickleRPCServlet static

method), 148
sendOK() (RPCServlet.RPCServlet static method), 154
sendOK() (XMLRPCServlet.XMLRPCServlet static

method), 190
sendRedirect() (HTTPResponse.HTTPResponse

method), 132
sendRedirectAndEnd() (HTTPContent.HTTPContent

method), 105

302 Index



Webware for Python 3, Release 3.0.9

sendRedirectAndEnd() (JSONRPC-
Servlet.JSONRPCServlet method), 138

sendRedirectAndEnd() (Page.Page method), 143
sendRedirectAndEnd() (PSP.PSPPage.PSPPage

method), 202
sendRedirectAndEnd() (SidebarPage.SidebarPage

method), 174
sendRedirectPermanent() (HTTPRe-

sponse.HTTPResponse method), 132
sendRedirectPermanentAndEnd() (HTTPCon-

tent.HTTPContent method), 105
sendRedirectPermanentAndEnd() (JSONRPC-

Servlet.JSONRPCServlet method), 139
sendRedirectPermanentAndEnd() (Page.Page

method), 143
sendRedirectPermanentAndEnd()

(PSP.PSPPage.PSPPage method), 202
sendRedirectPermanentAndEnd() (Side-

barPage.SidebarPage method), 174
sendRedirectSeeOther() (HTTPRe-

sponse.HTTPResponse method), 132
sendRedirectSeeOtherAndEnd() (HTTPCon-

tent.HTTPContent method), 105
sendRedirectSeeOtherAndEnd() (JSONRPC-

Servlet.JSONRPCServlet method), 139
sendRedirectSeeOtherAndEnd() (Page.Page

method), 143
sendRedirectSeeOtherAndEnd()

(PSP.PSPPage.PSPPage method), 202
sendRedirectSeeOtherAndEnd() (Side-

barPage.SidebarPage method), 174
sendRedirectTemporary() (HTTPRe-

sponse.HTTPResponse method), 132
sendRedirectTemporaryAndEnd() (HTTPCon-

tent.HTTPContent method), 105
sendRedirectTemporaryAndEnd() (JSONRPC-

Servlet.JSONRPCServlet method), 139
sendRedirectTemporaryAndEnd() (Page.Page

method), 143
sendRedirectTemporaryAndEnd()

(PSP.PSPPage.PSPPage method), 202
sendRedirectTemporaryAndEnd() (Side-

barPage.SidebarPage method), 175
sendResponse() (PickleRPCServlet.PickleRPCServlet

method), 148
serialNum() (UserKit.RoleUser.RoleUser method), 213
serialNum() (UserKit.User.User method), 219
serveContent() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
182

Server (class in MiscUtils.PickleRPC), 268
serverDictionary() (HTTPRequest.HTTPRequest

method), 126
serverPath() (HTTPRequest.HTTPRequest method),

127
serverPathDir() (HTTPRequest.HTTPRequest

method), 127
ServerProxy (in module MiscUtils.PickleRPC), 268
serverSideContextPath() (HTTPRe-

quest.HTTPRequest method), 127
serverSidePath() (Application.Application method),

93
serverSidePath() (HTTPContent.HTTPContent

method), 105
serverSidePath() (HTTPRequest.HTTPRequest

method), 127
serverSidePath() (HTTPServlet.HTTPServlet

method), 134
serverSidePath() (JSONRPC-

Servlet.JSONRPCServlet method), 139
serverSidePath() (Page.Page method), 143
serverSidePath() (PickleRPC-

Servlet.PickleRPCServlet method), 149
serverSidePath() (PlugIn.PlugIn method), 150
serverSidePath() (PSP.PSPPage.PSPPage method),

202
serverSidePath() (RPCServlet.RPCServlet method),

154
serverSidePath() (Servlet.Servlet method), 156
serverSidePath() (SidebarPage.SidebarPage method),

175
serverSidePath() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
182

serverSidePath() (XMLRPCServlet.XMLRPCServlet
method), 190

serverURL() (HTTPRequest.HTTPRequest method),
127

serverURLDir() (HTTPRequest.HTTPRequest method),
127

Servlet
module, 155

Servlet (class in Servlet), 155
servlet() (HTTPRequest.HTTPRequest method), 127
servlet() (Transaction.Transaction method), 179
ServletFactory

module, 156
ServletFactory (class in ServletFactory), 157
ServletFactoryManagerClass (class in URLParser),

184
servletForFile() (URL-

Parser.ServletFactoryManagerClass method),
185

servletForTransaction()
(PSP.PSPServletFactory.PSPServletFactory
method), 208

servletForTransaction() (ServletFac-
tory.PythonServletFactory method), 157

Index 303



Webware for Python 3, Release 3.0.9

servletForTransaction() (ServletFac-
tory.ServletFactory method), 158

servletForTransaction() (UnknownFileType-
Servlet.UnknownFileTypeServletFactory
method), 183

servletPath() (HTTPRequest.HTTPRequest method),
127

servletPathFromSiteRoot() (HTTPRe-
quest.HTTPRequest method), 127

servletPathname() (ExceptionHan-
dler.ExceptionHandler method), 100

servletURI() (HTTPRequest.HTTPRequest method),
127

ServletWriter (class in PSP.ServletWriter), 209
Session

module, 159
Session (class in Session), 159
session() (Application.Application method), 94
session() (HTTPContent.HTTPContent method), 105
session() (HTTPRequest.HTTPRequest method), 128
session() (JSONRPCServlet.JSONRPCServlet

method), 139
session() (Page.Page method), 143
session() (PSP.PSPPage.PSPPage method), 202
session() (SidebarPage.SidebarPage method), 175
session() (Transaction.Transaction method), 179
sessionCookiePath() (Application.Application

method), 94
SessionDynamicStore

module, 161
SessionDynamicStore (class in SessionDynamicStore),

161
sessionEncode() (HTTPContent.HTTPContent

method), 105
sessionEncode() (JSONRPCServlet.JSONRPCServlet

method), 139
sessionEncode() (Page.Page method), 143
sessionEncode() (PSP.PSPPage.PSPPage method),

202
sessionEncode() (Session.Session method), 160
sessionEncode() (SidebarPage.SidebarPage method),

175
SessionError, 160
SessionFileStore

module, 162
SessionFileStore (class in SessionFileStore), 162
sessionId() (HTTPRequest.HTTPRequest method),

128
SessionMemcachedStore

module, 164
SessionMemcachedStore (class in SessionMemcached-

Store), 164
SessionMemoryStore

module, 165

SessionMemoryStore (class in SessionMemoryStore),
165

sessionName() (Application.Application method), 94
sessionPrefix() (Application.Application method), 94
SessionRedisStore

module, 167
SessionRedisStore (class in SessionRedisStore), 167
sessions() (Application.Application method), 94
SessionShelveStore

module, 168
SessionShelveStore (class in SessionShelveStore), 168
SessionStore

module, 169
SessionStore (class in SessionStore), 169
sessionTimeout() (Application.Application method),

94
set_cdata_mode() (WebUtils.HTMLTag.HTMLReader

method), 239
setActiveUserTimeout()

(UserKit.RoleUserManager.RoleUserManager
method), 215

setActiveUserTimeout()
(UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 218

setActiveUserTimeout()
(UserKit.UserManager.UserManager method),
222

setActiveUserTimeout()
(UserKit.UserManagerToFile.UserManagerToFile
method), 224

setAutoCommit() (WSGIStreamOut.WSGIStreamOut
method), 188

setBufferSize() (WSGIStreamOut.WSGIStreamOut
method), 188

setCachedUserTimeout()
(UserKit.RoleUserManager.RoleUserManager
method), 215

setCachedUserTimeout()
(UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 218

setCachedUserTimeout()
(UserKit.UserManager.UserManager method),
222

setCachedUserTimeout()
(UserKit.UserManagerToFile.UserManagerToFile
method), 224

setClassName() (PSP.Context.PSPCLContext method),
192

setComment() (Cookie.Cookie method), 98
setCookie() (HTTPResponse.HTTPResponse method),

132
setDaemon() (TaskKit.Scheduler.Scheduler method),

228
setdefault() (SessionDynamic-

304 Index



Webware for Python 3, Release 3.0.9

Store.SessionDynamicStore method), 162
setdefault() (SessionFileStore.SessionFileStore

method), 163
setdefault() (SessionMemcached-

Store.SessionMemcachedStore method),
165

setdefault() (SessionMemoryS-
tore.SessionMemoryStore method), 166

setdefault() (SessionRedisStore.SessionRedisStore
method), 168

setdefault() (SessionShelveStore.SessionShelveStore
method), 169

setdefault() (SessionStore.SessionStore method), 171
setDescription() (UserKit.HierRole.HierRole

method), 212
setDescription() (UserKit.Role.Role method), 212
setDirty() (Session.Session method), 160
setDomain() (Cookie.Cookie method), 98
setEmptyTags() (WebUtils.HTMLTag.HTMLReader

method), 239
setEncoderDecoder() (SessionDynamic-

Store.SessionDynamicStore method), 162
setEncoderDecoder() (SessionFile-

Store.SessionFileStore method), 163
setEncoderDecoder() (SessionMemcached-

Store.SessionMemcachedStore method),
165

setEncoderDecoder() (SessionMemoryS-
tore.SessionMemoryStore method), 166

setEncoderDecoder() (SessionRedis-
Store.SessionRedisStore method), 168

setEncoderDecoder() (SessionShelve-
Store.SessionShelveStore method), 169

setEncoderDecoder() (SessionStore.SessionStore
method), 171

setEncoderDecoder()
(UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 218

setEncoderDecoder()
(UserKit.UserManagerToFile.UserManagerToFile
method), 224

setError() (Transaction.Transaction method), 179
setErrorHeaders() (HTTPResponse.HTTPResponse

method), 132
setEventHandler() (PSP.PSPParser.PSPParser

method), 206
setExpires() (Cookie.Cookie method), 98
setFactory() (HTTPContent.HTTPContent method),

105
setFactory() (HTTPServlet.HTTPServlet method), 134
setFactory() (JSONRPCServlet.JSONRPCServlet

method), 139
setFactory() (Page.Page method), 143
setFactory() (PickleRPCServlet.PickleRPCServlet

method), 149
setFactory() (PSP.PSPPage.PSPPage method), 202
setFactory() (RPCServlet.RPCServlet method), 154
setFactory() (Servlet.Servlet method), 156
setFactory() (SidebarPage.SidebarPage method), 175
setFactory() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
182

setFactory() (XMLRPCServlet.XMLRPCServlet
method), 190

setField() (HTTPRequest.HTTPRequest method), 128
setHeader() (HTTPResponse.HTTPResponse method),

132
setHeadings() (MiscUtils.DataTable.DataTable

method), 251
setHttpOnly() (Cookie.Cookie method), 98
setIndention() (PSP.ServletWriter.ServletWriter

method), 210
setIndentSpaces() (PSP.ServletWriter.ServletWriter

method), 210
setIndentType() (PSP.ServletWriter.ServletWriter

method), 210
setManager() (UserKit.RoleUser.RoleUser method),

214
setManager() (UserKit.User.User method), 219
setMaxAge() (Cookie.Cookie method), 98
setModifiedUserTimeout()

(UserKit.RoleUserManager.RoleUserManager
method), 215

setModifiedUserTimeout()
(UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 218

setModifiedUserTimeout()
(UserKit.UserManager.UserManager method),
222

setModifiedUserTimeout()
(UserKit.UserManagerToFile.UserManagerToFile
method), 224

setName() (TaskKit.Scheduler.Scheduler method), 228
setName() (UserKit.HierRole.HierRole method), 212
setName() (UserKit.Role.Role method), 212
setName() (UserKit.RoleUser.RoleUser method), 214
setName() (UserKit.User.User method), 219
setNextTime() (TaskKit.Scheduler.Scheduler method),

228
setOnDemand() (TaskKit.Scheduler.Scheduler method),

228
setOnDemand() (TaskKit.TaskHandler.TaskHandler

method), 230
setPassword() (UserKit.RoleUser.RoleUser method),

214
setPassword() (UserKit.User.User method), 219
setPath() (Cookie.Cookie method), 98
setPeriod() (TaskKit.TaskHandler.TaskHandler

Index 305



Webware for Python 3, Release 3.0.9

method), 230
setPrintsStack() (WebUtils.HTMLTag.HTMLReader

method), 239
setPSPReader() (PSP.Context.PSPCLContext method),

192
setPSPReader() (PSP.Context.PSPContext method),

193
setPythonFileEncoding()

(PSP.Context.PSPCLContext method), 192
setPythonFileEncoding() (PSP.Context.PSPContext

method), 193
setPythonFileName() (PSP.Context.PSPCLContext

method), 193
setPythonFileName() (PSP.Context.PSPContext

method), 193
setResponse() (Transaction.Transaction method), 179
setRoles() (UserKit.RoleUser.RoleUser method), 214
setRunning() (TaskKit.Scheduler.Scheduler method),

228
setSameSite() (Cookie.Cookie method), 98
setScheduled() (TaskKit.Scheduler.Scheduler method),

229
setSecure() (Cookie.Cookie method), 98
setSerialNum() (UserKit.RoleUser.RoleUser method),

214
setSerialNum() (UserKit.User.User method), 219
setServlet() (Transaction.Transaction method), 179
setServletWriter() (PSP.Context.PSPCLContext

method), 193
setServletWriter() (PSP.Context.PSPContext

method), 193
setSession() (Transaction.Transaction method), 179
setSessionExpired() (HTTPRequest.HTTPRequest

method), 128
setSessionId() (HTTPRequest.HTTPRequest method),

128
setSetting() (Application.Application method), 94
setSetting() (ConfigurableForServerSide-

Path.ConfigurableForServerSidePath method),
96

setSetting() (MiscUtils.Configurable.Configurable
method), 244

setSetting() (UnknownFileType-
Servlet.UnknownFileTypeServlet method),
182

setStatus() (HTTPResponse.HTTPResponse method),
133

setTemplateInfo() (PSP.ParseEventHandler.ParseEventHandler
method), 198

setTimeout() (Session.Session method), 160
setting() (Application.Application method), 94
setting() (ConfigurableForServerSide-

Path.ConfigurableForServerSidePath method),
96

setting() (ExceptionHandler.ExceptionHandler
method), 100

setting() (MiscUtils.Configurable.Configurable
method), 244

setting() (UnknownFileType-
Servlet.UnknownFileTypeServlet method),
182

setTransaction() (HTTPExcep-
tions.HTTPAuthenticationRequired method),
107

setTransaction() (HTTPExcep-
tions.HTTPBadRequest method), 108

setTransaction() (HTTPExceptions.HTTPConflict
method), 109

setTransaction() (HTTPExceptions.HTTPException
method), 110

setTransaction() (HTTPExceptions.HTTPForbidden
method), 111

setTransaction() (HTTPExcep-
tions.HTTPInsufficientStorage method),
112

setTransaction() (HTTPExcep-
tions.HTTPMethodNotAllowed method),
113

setTransaction() (HTTPExcep-
tions.HTTPMovedPermanently method),
114

setTransaction() (HTTPExceptions.HTTPNotFound
method), 115

setTransaction() (HTTPExcep-
tions.HTTPNotImplemented method), 116

setTransaction() (HTTPExcep-
tions.HTTPPreconditionFailed method),
117

setTransaction() (HTTPExcep-
tions.HTTPRequestTimeout method), 118

setTransaction() (HTTPExcep-
tions.HTTPServerError method), 119

setTransaction() (HTTPExcep-
tions.HTTPServiceUnavailable method),
120

setTransaction() (HTTPExcep-
tions.HTTPSessionExpired method), 120

setTransaction() (HTTPExcep-
tions.HTTPTemporaryRedirect method),
122

setTransaction() (HTTPExcep-
tions.HTTPUnsupportedMediaType method),
122

setTransaction() (HTTPRequest.HTTPRequest
method), 128

setTransaction() (Request.Request method), 152
setType() (MiscUtils.DataTable.TableColumn method),

251

306 Index



Webware for Python 3, Release 3.0.9

setUpExamplePages() (PlugIn.PlugIn method), 150
setURLPath() (HTTPRequest.HTTPRequest method),

128
setUserClass() (UserKit.RoleUserManager.RoleUserManager

method), 215
setUserClass() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 218
setUserClass() (UserKit.UserManager.UserManager

method), 222
setUserClass() (UserKit.UserManagerToFile.UserManagerToFile

method), 224
setUserDir() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 218
setUserDir() (UserKit.UserManagerToFile.UserManagerToFile

method), 224
setValue() (Cookie.Cookie method), 98
setValue() (Session.Session method), 160
setVersion() (Cookie.Cookie method), 98
shouldCacheContent() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
182

shutDown() (Application.Application method), 94
shutDown() (UserKit.RoleUserManager.RoleUserManager

method), 215
shutDown() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 218
shutDown() (UserKit.UserManager.UserManager

method), 222
shutDown() (UserKit.UserManagerToFile.UserManagerToFile

method), 224
SidebarPage

module, 171
SidebarPage (class in SidebarPage), 171
sigTerm() (Application.Application method), 94
Singleton (class in ExceptionHandler), 101
siteRoot() (HTTPRequest.HTTPRequest method), 128
siteRootFromCurrentServlet() (HTTPRe-

quest.HTTPRequest method), 128
size() (HTTPResponse.HTTPResponse method), 133
size() (WSGIStreamOut.WSGIStreamOut method), 188
skip_lines() (WebUtils.FieldStorage.FieldStorage

method), 233
skipQuote() (PSP.BraceConverter.BraceConverter

method), 191
skipSpaces() (PSP.StreamReader.StreamReader

method), 211
skipUntil() (PSP.StreamReader.StreamReader

method), 211
sleep() (HTTPContent.HTTPContent method), 105
sleep() (HTTPServlet.HTTPServlet method), 134
sleep() (JSONRPCServlet.JSONRPCServlet method),

139
sleep() (Page.Page method), 143
sleep() (PickleRPCServlet.PickleRPCServlet method),

149
sleep() (PSP.PSPPage.PSPPage method), 202
sleep() (RPCServlet.RPCServlet method), 154
sleep() (Servlet.Servlet method), 156
sleep() (Session.Session method), 160
sleep() (SidebarPage.SidebarPage method), 175
sleep() (Transaction.Transaction method), 179
sleep() (UnknownFileType-

Servlet.UnknownFileTypeServlet method),
182

sleep() (XMLRPCServlet.XMLRPCServlet method),
190

splitLines() (in module PSP.PSPUtils), 209
start() (TaskKit.Scheduler.Scheduler method), 229
startField() (MiscUtils.CSVParser.CSVParser

method), 246
startRecord() (MiscUtils.CSVParser.CSVParser

method), 246
startResponse() (WSGIStreamOut.WSGIStreamOut

method), 188
startSessionSweeper() (Application.Application

method), 94
startsNewBlock() (in module PSP.PSPUtils), 209
startTime() (Application.Application method), 94
startTime() (TaskKit.TaskHandler.TaskHandler

method), 231
stop() (TaskKit.Scheduler.Scheduler method), 229
stop() (TaskKit.TaskHandler.TaskHandler method), 231
stopAllTasks() (TaskKit.Scheduler.Scheduler method),

229
stopTask() (TaskKit.Scheduler.Scheduler method), 229
storeAllSessions() (SessionDynamic-

Store.SessionDynamicStore method), 162
storeAllSessions() (SessionFile-

Store.SessionFileStore method), 163
storeAllSessions() (SessionMemcached-

Store.SessionMemcachedStore method),
165

storeAllSessions() (SessionMemoryS-
tore.SessionMemoryStore method), 166

storeAllSessions() (SessionRedis-
Store.SessionRedisStore method), 168

storeAllSessions() (SessionShelve-
Store.SessionShelveStore method), 169

storeAllSessions() (SessionStore.SessionStore
method), 171

storeSession() (SessionDynamic-
Store.SessionDynamicStore method), 162

storeSession() (SessionFileStore.SessionFileStore
method), 163

storeSession() (SessionMemcached-
Store.SessionMemcachedStore method),
165

storeSession() (SessionMemoryS-

Index 307



Webware for Python 3, Release 3.0.9

tore.SessionMemoryStore method), 166
storeSession() (SessionRedisStore.SessionRedisStore

method), 168
storeSession() (SessionShelve-

Store.SessionShelveStore method), 169
storeSession() (SessionStore.SessionStore method),

171
streamOut() (HTTPResponse.HTTPResponse method),

133
streamOut() (Response.Response method), 153
StreamReader (class in PSP.StreamReader), 210
strerror (WSGIStreamOut.InvalidCommandSequence

attribute), 186
subtagAt() (WebUtils.HTMLTag.HTMLTag method),

241
subtags() (WebUtils.HTMLTag.HTMLTag method),

241

T
TableColumn (class in MiscUtils.DataTable), 251
TableRecord (class in MiscUtils.DataTable), 252
TagCannotHaveConfig (class in WebUtils.HTMLTag),

242
TagCanOnlyHaveConfig (class in WebUtils.HTMLTag),

242
TagConfig (class in WebUtils.HTMLTag), 242
tagContainmentConfig (WebU-

tils.HTMLTag.HTMLReader attribute), 239
tagWithId() (WebUtils.HTMLTag.HTMLTag method),

241
tagWithMatchingAttr() (WebU-

tils.HTMLTag.HTMLTag method), 241
Task (class in TaskKit.Task), 229
TaskHandler (class in TaskKit.TaskHandler), 230
TaskKit

module, 76
TaskKit.Scheduler

module, 225
TaskKit.Task

module, 229
TaskKit.TaskHandler

module, 230
taskManager() (Application.Application method), 94
threadSafeHandler()

(PSP.ParseEventHandler.ParseEventHandler
method), 198

time() (HTTPRequest.HTTPRequest method), 128
time() (Request.Request method), 152
timeDecode() (in module MiscUtils.DateInterval), 253
timeEncode() (in module MiscUtils.DateInterval), 253
timeout() (Session.Session method), 160
timeStamp() (HTTPRequest.HTTPRequest method),

129
timestamp() (in module MiscUtils.Funcs), 260

timeStamp() (Request.Request method), 152
title() (HTTPExcep-

tions.HTTPAuthenticationRequired method),
107

title() (HTTPExceptions.HTTPBadRequest method),
108

title() (HTTPExceptions.HTTPConflict method), 109
title() (HTTPExceptions.HTTPException method),

110
title() (HTTPExceptions.HTTPForbidden method),

111
title() (HTTPExceptions.HTTPInsufficientStorage

method), 112
title() (HTTPExceptions.HTTPMethodNotAllowed

method), 113
title() (HTTPExceptions.HTTPMovedPermanently

method), 114
title() (HTTPExceptions.HTTPNotFound method),

115
title() (HTTPExceptions.HTTPNotImplemented

method), 116
title() (HTTPExceptions.HTTPPreconditionFailed

method), 117
title() (HTTPExceptions.HTTPRequestTimeout

method), 118
title() (HTTPExceptions.HTTPServerError method),

119
title() (HTTPExceptions.HTTPServiceUnavailable

method), 120
title() (HTTPExceptions.HTTPSessionExpired

method), 121
title() (HTTPExceptions.HTTPTemporaryRedirect

method), 122
title() (HTTPExcep-

tions.HTTPUnsupportedMediaType method),
123

title() (Page.Page method), 144
title() (PSP.PSPPage.PSPPage method), 203
title() (SidebarPage.SidebarPage method), 175
Transaction

module, 178
Transaction (class in Transaction), 178
transaction() (HTTPContent.HTTPContent method),

105
transaction() (HTTPRequest.HTTPRequest method),

129
transaction() (JSONRPCServlet.JSONRPCServlet

method), 139
transaction() (Page.Page method), 144
transaction() (PickleRPCServlet.PickleRPCServlet

method), 149
transaction() (PSP.PSPPage.PSPPage method), 203
transaction() (Request.Request method), 152
transaction() (RPCServlet.RPCServlet method), 154

308 Index



Webware for Python 3, Release 3.0.9

transaction() (SidebarPage.SidebarPage method),
175

transaction() (XMLRPCServlet.XMLRPCServlet
method), 190

Transport (class in MiscUtils.PickleRPC), 268
type (WebUtils.FieldStorage.MiniFieldStorage at-

tribute), 234
type() (MiscUtils.DataTable.TableColumn method),

251
type_options (WebU-

tils.FieldStorage.MiniFieldStorage attribute),
234

U
unescape() (WebUtils.HTMLTag.HTMLReader

method), 239
uniqueId() (in module MiscUtils.Funcs), 260
uniqueness() (PSP.PSPServletFactory.PSPServletFactory

method), 208
uniqueness() (ServletFactory.PythonServletFactory

method), 157
uniqueness() (ServletFactory.ServletFactory method),

158
uniqueness() (UnknownFileType-

Servlet.UnknownFileTypeServletFactory
method), 183

unknown_decl() (WebUtils.HTMLTag.HTMLReader
method), 239

UnknownFileTypeServlet
module, 179

UnknownFileTypeServlet (class in UnknownFileType-
Servlet), 179

UnknownFileTypeServletFactory (class in Unknown-
FileTypeServlet), 182

unregister() (TaskKit.TaskHandler.TaskHandler
method), 231

unregisterTask() (TaskKit.Scheduler.Scheduler
method), 229

updatedFile() (ImportManager.ImportManager
method), 135

updatepos() (WebUtils.HTMLTag.HTMLReader
method), 239

uri() (HTTPRequest.HTTPRequest method), 129
uriWebwareRoot() (HTTPRequest.HTTPRequest

method), 129
urlDecode() (HTTPContent.HTTPContent static

method), 105
urlDecode() (in module WebUtils.Funcs), 235
urlDecode() (JSONRPCServlet.JSONRPCServlet static

method), 139
urlDecode() (Page.Page static method), 144
urlDecode() (PSP.PSPPage.PSPPage static method),

203

urlDecode() (SidebarPage.SidebarPage static method),
175

urlEncode() (HTTPContent.HTTPContent static
method), 105

urlEncode() (in module WebUtils.Funcs), 235
urlEncode() (JSONRPCServlet.JSONRPCServlet static

method), 139
urlEncode() (Page.Page static method), 144
urlEncode() (PSP.PSPPage.PSPPage static method),

203
urlEncode() (SidebarPage.SidebarPage static method),

175
URLParameterParser (class in URLParser), 185
URLParser

module, 183
URLParser (class in URLParser), 185
urlPath() (HTTPRequest.HTTPRequest method), 129
urlPathDir() (HTTPRequest.HTTPRequest method),

129
usage() (WebUtils.HTMLTag.HTMLReader method),

239
useBinaryPickle() (PickleRPC-

Servlet.PickleRPCServlet static method),
149

User (class in UserKit.User), 219
user_agent (MiscUtils.PickleRPC.SafeTransport

attribute), 267
user_agent (MiscUtils.PickleRPC.Transport attribute),

269
userClass() (UserKit.RoleUserManager.RoleUserManager

method), 215
userClass() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 218
userClass() (UserKit.UserManager.UserManager

method), 222
userClass() (UserKit.UserManagerToFile.UserManagerToFile

method), 224
userConfig() (Application.Application method), 95
userConfig() (ConfigurableForServerSide-

Path.ConfigurableForServerSidePath method),
97

userConfig() (MiscUtils.Configurable.Configurable
method), 244

userConfig() (UnknownFileType-
Servlet.UnknownFileTypeServlet method),
182

userDir() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 218

userDir() (UserKit.UserManagerToFile.UserManagerToFile
method), 224

userForExternalId()
(UserKit.RoleUserManager.RoleUserManager
method), 215

userForExternalId()

Index 309



Webware for Python 3, Release 3.0.9

(UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 218

userForExternalId()
(UserKit.UserManager.UserManager method),
222

userForExternalId()
(UserKit.UserManagerToFile.UserManagerToFile
method), 224

userForName() (UserKit.RoleUserManager.RoleUserManager
method), 215

userForName() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 218

userForName() (UserKit.UserManager.UserManager
method), 222

userForName() (UserKit.UserManagerToFile.UserManagerToFile
method), 224

userForSerialNum() (UserKit.RoleUserManager.RoleUserManager
method), 215

userForSerialNum() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile
method), 218

userForSerialNum() (UserKit.UserManager.UserManager
method), 222

userForSerialNum() (UserKit.UserManagerToFile.UserManagerToFile
method), 224

UserKit
module, 74

UserKit.HierRole
module, 211

UserKit.Role
module, 212

UserKit.RoleUser
module, 213

UserKit.RoleUserManager
module, 214

UserKit.RoleUserManagerMixIn
module, 216

UserKit.RoleUserManagerToFile
module, 216

UserKit.User
module, 219

UserKit.UserManager
module, 219

UserKit.UserManagerToFile
module, 222

UserManager (class in UserKit.UserManager), 219
UserManagerToFile (class in

UserKit.UserManagerToFile), 222
UserMixIn (class in UserKit.UserManagerToFile), 224
users() (UserKit.RoleUserManager.RoleUserManager

method), 216
users() (UserKit.RoleUserManagerToFile.RoleUserManagerToFile

method), 218
users() (UserKit.UserManager.UserManager method),

222

users() (UserKit.UserManagerToFile.UserManagerToFile
method), 224

V
valid_boundary() (in module WebUtils.FieldStorage),

234
validTechniques() (UnknownFileType-

Servlet.UnknownFileTypeServlet static
method), 182

value() (Cookie.Cookie method), 98
value() (HTTPRequest.HTTPRequest method), 129
value() (Session.Session method), 160
valueForAttr() (MiscUtils.DataTable.TableRecord

method), 252
valueForKey() (in module MiscU-

tils.NamedValueAccess), 262
valueForKey() (MiscUtils.DataTable.TableRecord

method), 252
ValueForKeyError, 262
valueForName() (in module MiscU-

tils.NamedValueAccess), 262
valueForRawValue() (MiscU-

tils.DataTable.TableColumn method), 251
valueForString() (in module MiscUtils.Funcs), 260
values() (MiscUtils.DataTable.TableRecord method),

253
values() (Session.Session method), 160
values() (SessionDynamicStore.SessionDynamicStore

method), 162
values() (SessionFileStore.SessionFileStore method),

163
values() (SessionMemcached-

Store.SessionMemcachedStore method),
165

values() (SessionMemoryStore.SessionMemoryStore
method), 166

values() (SessionRedisStore.SessionRedisStore
method), 168

values() (SessionShelveStore.SessionShelveStore
method), 169

values() (SessionStore.SessionStore method), 171
version() (Cookie.Cookie method), 98

W
wait() (TaskKit.Scheduler.Scheduler method), 229
wasAccessed() (UserKit.RoleUser.RoleUser method),

214
wasAccessed() (UserKit.User.User method), 219
watchFile() (ImportManager.ImportManager method),

135
WebUtils

module, 82
WebUtils.ExpansiveHTMLForException

module, 231

310 Index



Webware for Python 3, Release 3.0.9

WebUtils.FieldStorage
module, 231

WebUtils.Funcs
module, 234

WebUtils.HTMLForException
module, 235

WebUtils.HTMLTag
module, 236

WebUtils.HTTPStatusCodes
module, 243

webwarePath() (Application.Application method), 95
webwareVersion() (Application.Application method),

95
webwareVersionString() (Application.Application

method), 95
with_traceback() (Application.EndResponse method),

95
with_traceback() (HTTPContent.HTTPContentError

method), 106
with_traceback() (HTTPExcep-

tions.HTTPAuthenticationRequired method),
107

with_traceback() (HTTPExcep-
tions.HTTPBadRequest method), 108

with_traceback() (HTTPExceptions.HTTPConflict
method), 109

with_traceback() (HTTPExceptions.HTTPException
method), 110

with_traceback() (HTTPExceptions.HTTPForbidden
method), 111

with_traceback() (HTTPExcep-
tions.HTTPInsufficientStorage method),
112

with_traceback() (HTTPExcep-
tions.HTTPMethodNotAllowed method),
113

with_traceback() (HTTPExcep-
tions.HTTPMovedPermanently method),
114

with_traceback() (HTTPExceptions.HTTPNotFound
method), 115

with_traceback() (HTTPExcep-
tions.HTTPNotImplemented method), 116

with_traceback() (HTTPExcep-
tions.HTTPPreconditionFailed method),
117

with_traceback() (HTTPExcep-
tions.HTTPRequestTimeout method), 118

with_traceback() (HTTPExcep-
tions.HTTPServerError method), 119

with_traceback() (HTTPExcep-
tions.HTTPServiceUnavailable method),
120

with_traceback() (HTTPExcep-

tions.HTTPSessionExpired method), 121
with_traceback() (HTTPExcep-

tions.HTTPTemporaryRedirect method),
122

with_traceback() (HTTPExcep-
tions.HTTPUnsupportedMediaType method),
123

with_traceback() (MiscU-
tils.Configurable.ConfigurationError method),
244

with_traceback() (MiscUtils.CSVParser.ParseError
method), 247

with_traceback() (MiscU-
tils.DataTable.DataTableError method),
251

with_traceback() (MiscUtils.DBPool.DBPoolError
method), 254

with_traceback() (MiscU-
tils.DBPool.NotSupportedError method),
255

with_traceback() (MiscU-
tils.DictForArgs.DictForArgsError method),
255

with_traceback() (MiscU-
tils.NamedValueAccess.NamedValueAccessError
method), 262

with_traceback() (MiscU-
tils.NamedValueAccess.ValueForKeyError
method), 262

with_traceback() (MiscUtils.PickleRPC.Error
method), 265

with_traceback() (MiscU-
tils.PickleRPC.InvalidContentTypeError
method), 265

with_traceback() (MiscU-
tils.PickleRPC.ProtocolError method), 266

with_traceback() (MiscU-
tils.PickleRPC.RequestError method), 266

with_traceback() (MiscU-
tils.PickleRPC.ResponseError method),
266

with_traceback() (PlugIn.PlugInError method), 151
with_traceback() (PSP.PSPUtils.PSPParserException

method), 208
with_traceback() (Session.SessionError method), 160
with_traceback() (WebU-

tils.HTMLTag.HTMLNotAllowedError
method), 236

with_traceback() (WebU-
tils.HTMLTag.HTMLTagAttrLookupError
method), 241

with_traceback() (WebU-
tils.HTMLTag.HTMLTagError method),
241

Index 311



Webware for Python 3, Release 3.0.9

with_traceback() (WebU-
tils.HTMLTag.HTMLTagIncompleteError
method), 242

with_traceback() (WebU-
tils.HTMLTag.HTMLTagProcessingInstructionError
method), 242

with_traceback() (WebU-
tils.HTMLTag.HTMLTagUnbalancedError
method), 242

with_traceback() (WS-
GIStreamOut.InvalidCommandSequence
method), 187

wordWrap() (in module MiscUtils.Funcs), 260
work() (ExceptionHandler.ExceptionHandler method),

100
write() (ExceptionHandler.ExceptionHandler method),

100
write() (HTTPContent.HTTPContent method), 106
write() (HTTPResponse.HTTPResponse method), 133
write() (JSONRPCServlet.JSONRPCServlet method),

139
write() (MiscUtils.PickleCache.PickleCacheWriter

method), 264
write() (Page.Page method), 144
write() (PSP.PSPPage.PSPPage method), 203
write() (Response.Response method), 153
write() (SidebarPage.SidebarPage method), 175
write() (WSGIStreamOut.WSGIStreamOut method),

188
writeActivityLog() (Application.Application

method), 95
writeAttrs() (ExceptionHandler.ExceptionHandler

method), 100
writeBanner() (SidebarPage.SidebarPage method),

175
writeBody() (Page.Page method), 144
writeBody() (PSP.PSPPage.PSPPage method), 203
writeBody() (SidebarPage.SidebarPage method), 175
writeBodyParts() (Page.Page method), 144
writeBodyParts() (PSP.PSPPage.PSPPage method),

203
writeBodyParts() (SidebarPage.SidebarPage method),

175
writeContent() (Page.Page method), 144
writeContent() (PSP.PSPPage.PSPPage method), 203
writeContent() (SidebarPage.SidebarPage method),

176
writeContextsMenu() (SidebarPage.SidebarPage

method), 176
writeDict() (ExceptionHandler.ExceptionHandler

method), 101
writeDocType() (Page.Page method), 144
writeDocType() (PSP.PSPPage.PSPPage method), 203
writeDocType() (SidebarPage.SidebarPage method),

176
writeEnvironment() (ExceptionHan-

dler.ExceptionHandler method), 101
writeError() (JSONRPCServlet.JSONRPCServlet

method), 139
writeExceptionReport() (Application.Application

method), 95
writeExceptionReport() (HTTPCon-

tent.HTTPContent method), 106
writeExceptionReport() (HTTPRe-

quest.HTTPRequest method), 129
writeExceptionReport() (HTTPRe-

sponse.HTTPResponse method), 133
writeExceptionReport() (JSONRPC-

Servlet.JSONRPCServlet method), 139
writeExceptionReport() (Page.Page method), 145
writeExceptionReport() (PSP.PSPPage.PSPPage

method), 204
writeExceptionReport() (Request.Request method),

152
writeExceptionReport() (Response.Response

method), 153
writeExceptionReport() (Session.Session method),

160
writeExceptionReport() (SidebarPage.SidebarPage

method), 176
writeExceptionReport() (Transaction.Transaction

method), 179
writeFancyTraceback() (ExceptionHan-

dler.ExceptionHandler method), 101
writeFile() (MiscUtils.DataTable.DataTable method),

251
writeFileNamed() (MiscUtils.DataTable.DataTable

method), 251
writeHead() (Page.Page method), 145
writeHead() (PSP.PSPPage.PSPPage method), 204
writeHead() (SidebarPage.SidebarPage method), 176
writeHeaders() (HTTPResponse.HTTPResponse

method), 133
writeHeadParts() (Page.Page method), 145
writeHeadParts() (PSP.PSPPage.PSPPage method),

204
writeHeadParts() (SidebarPage.SidebarPage method),

176
writeHTML() (ExceptionHandler.ExceptionHandler

method), 101
writeHTML() (Page.Page method), 145
writeHTML() (PSP.PSPPage.PSPPage method), 204
writeHTML() (SidebarPage.SidebarPage method), 176
writeIds() (ExceptionHandler.ExceptionHandler

method), 101
writeJavaScript() (Page.Page method), 145
writeJavaScript() (PSP.PSPPage.PSPPage method),

204

312 Index



Webware for Python 3, Release 3.0.9

writeJavaScript() (SidebarPage.SidebarPage
method), 177

writeln() (ExceptionHandler.ExceptionHandler
method), 101

writeln() (HTTPContent.HTTPContent method), 106
writeln() (JSONRPCServlet.JSONRPCServlet

method), 140
writeln() (Page.Page method), 146
writeln() (PSP.PSPPage.PSPPage method), 205
writeln() (SidebarPage.SidebarPage method), 177
writeMetaData() (Page.Page method), 145
writeMetaData() (PSP.PSPPage.PSPPage method),

204
writeMetaData() (SidebarPage.SidebarPage method),

177
writeMiscInfo() (ExceptionHan-

dler.ExceptionHandler method), 101
writePickleCache() (in module MiscU-

tils.PickleCache), 264
writeResult() (JSONRPCServlet.JSONRPCServlet

method), 140
writeSidebar() (SidebarPage.SidebarPage method),

177
writeStyleSheet() (Page.Page method), 145
writeStyleSheet() (PSP.PSPPage.PSPPage method),

204
writeStyleSheet() (SidebarPage.SidebarPage

method), 177
writeTitle() (ExceptionHandler.ExceptionHandler

method), 101
writeTitle() (Page.Page method), 145
writeTitle() (PSP.PSPPage.PSPPage method), 204
writeTitle() (SidebarPage.SidebarPage method), 177
writeTraceback() (ExceptionHan-

dler.ExceptionHandler method), 101
writeTransaction() (ExceptionHan-

dler.ExceptionHandler method), 101
writeVersions() (SidebarPage.SidebarPage method),

177
writeWebwareDocsMenu() (SidebarPage.SidebarPage

method), 177
writeWebwareExitsMenu() (SidebarPage.SidebarPage

method), 177
writeWebwareSidebarSections() (Side-

barPage.SidebarPage method), 177
WSGIStreamOut

module, 186
WSGIStreamOut (class in WSGIStreamOut), 187

X
XMLRPCServlet

module, 188
XMLRPCServlet (class in XMLRPCServlet), 188

Index 313


	Overview
	Synopsis
	Design Points and Changes
	Download and Installation
	Documentation
	Feedback, Contributing and Support

	Installation
	Python Version
	Create a Virtual Environment
	Activate the Virtual Environment
	Installation with Pip
	Installing “Extras”
	Installation from Source
	Check the Installed Version

	List of Changes
	What’s new in Webware for Python 3

	Migration Guide
	Check which Webware plug-ins you were using
	Migrate your application to Python 3
	Use a WSGI server instead of the WebKit application server

	Copyright and License
	The Gist
	Copyright

	Quickstart
	The Webware CLI
	Creating a Working Directory
	Running the Webware Examples
	Using the Admin Context
	A “Hello World” Example

	Beginner Tutorial
	Creating a Working Directory
	Changing the Webware Configuration
	Creating and Understanding the Servlet
	A Brief Introduction to the Servlet
	A Photo Album
	Iteration 1: Displaying files
	Iteration 2: Uploading Files


	Application Development
	Core Concepts
	Setting up your application
	Creating a working directory
	Using a Version Control system for Your Application

	Structuring your Code
	SitePage

	Configuration
	Contexts
	Plug-ins
	Sessions
	Actions
	Naming Conventions
	Errors and Uncaught Exceptions
	Activity Log
	Administration
	Debugging
	Development Mode
	print
	Raising Exceptions
	Reloading the Development Server
	Assertions
	Debugging using PDB
	Debugging in an IDE

	Bootstrap Webware from Command line
	How do I Develop an App?

	Configuration
	Application.config
	General Settings
	Path Handling
	Sessions
	Caching
	Errors
	Logging


	Deployment
	Installation on the Production System
	Starting the WSGI Server on Boot
	Using systemd
	Using Supervisor

	Logfile Rotation
	Running behind a Reverse Proxy
	Using Apache as Reverse Proxy
	Using NGINX as a Reverse Proxy

	Using Apache and mod_wsgi
	Other WSGI servers
	Using Bjoern as WSGI server
	Using MeinHeld as WSGI server
	Using CherryPy as WSGI server
	Using uWSGI as WSGI server
	Using Gunicorn as WSGI server

	Sourceless Installs
	Caveats of Multiprocessing Mode

	Plug-ins
	Style Guidelines
	Introduction
	Syntax and Naming
	Methods and Attributes
	Method Categories
	Abbreviations
	Compound Names
	Component Names
	Rules

	Structure and Patterns
	Classes
	Configuration Files
	Accessing Named Objects
	Components
	Breaking the Rules


	PSP
	Summary
	Feedback
	General Overview
	PSP Tags
	Expression Tag – <%= expression %>
	Script Tag – <% script code %>
	Python Code Blocks that span PSP Script Tags
	Automatic Blocks
	Manual Blocks
	Braces

	File and Class Level Code – <psp:file> and <psp:class>
	Method Tag – <psp:method ...>
	Include Tag – <psp:include ...>
	Insert Tag – <psp:insert ...>

	Directives
	Page Directive – <%@ page ... %>
	Include Directive – <%@ include ... %>

	Other Tags
	Developers

	UserKit
	Introduction
	Examples and More Details
	Encryption of Passwords
	Credit

	TaskKit
	Scheduling with Python and Webware
	Tasks
	Generating static pages
	Scheduling

	Generating static pages again
	The Scheduler
	Credit

	WebUtils
	HTMLForException
	HTTPStatusCodes

	MiscUtils
	Testing
	Testing Webware itself
	Testing Webware applications

	API Reference
	Core Classes
	Application
	ConfigurableForServerSidePath
	Cookie
	ExceptionHandler
	HTTPContent
	HTTPExceptions
	HTTPRequest
	HTTPResponse
	HTTPServlet
	ImportManager
	JSONRPCServlet
	Page
	PickleRPCServlet
	PlugIn
	Properties
	Request
	Response
	RPCServlet
	Servlet
	ServletFactory
	Session
	SessionDynamicStore
	SessionFileStore
	SessionMemcachedStore
	SessionMemoryStore
	SessionRedisStore
	SessionShelveStore
	SessionStore
	SidebarPage
	Transaction
	UnknownFileTypeServlet
	URLParser
	WSGIStreamOut
	XMLRPCServlet

	PSP
	BraceConverter
	Context
	Generators
	ParseEventHandler
	PSPCompiler
	PSPPage
	PSPParser
	PSPServletFactory
	PSPUtils
	ServletWriter
	StreamReader

	UserKit
	HierRole
	Role
	RoleUser
	RoleUserManager
	RoleUserManagerMixIn
	RoleUserManagerToFile
	User
	UserManager
	UserManagerToFile

	TaskKit
	Scheduler
	Task
	TaskHandler

	WebUtils
	ExpansiveHTMLForException
	FieldStorage
	Funcs
	HTMLForException
	HTMLTag
	HTTPStatusCodes

	MiscUtils
	Configurable
	CSVJoiner
	CSVParser
	DataTable
	DateInterval
	DateParser
	DBPool
	DictForArgs
	Error
	Funcs
	MixIn
	NamedValueAccess
	ParamFactory
	PickleCache
	PickleRPC


	Indices and tables
	Python Module Index
	Index

